【題目】如圖,四棱錐VABCD中,底面ABCD是菱形,對(duì)角線ACBD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).

1)求證:VA∥平面BDE;

2)求證:平面VAC⊥平面BDE

【答案】1)見解析(2)見解析

【解析】

1)連結(jié)OE,證明VAOE得到答案.

2)證明VOBD,BDAC,得到BD⊥平面VAC,得到證明.

1)連結(jié)OE.因?yàn)榈酌?/span>ABCD是菱形,所以OAC的中點(diǎn),

又因?yàn)?/span>E是棱VC的中點(diǎn),所以VAOE,又因?yàn)?/span>OE平面BDE,VA平面BDE,

所以VA∥平面BDE;

2)因?yàn)?/span>VO⊥平面ABCD,又BD平面ABCD,所以VOBD

因?yàn)榈酌?/span>ABCD是菱形,所以BDAC,又VOACO,VOAC平面VAC,

所以BD⊥平面VAC.又因?yàn)?/span>BD平面BDE,所以平面VAC⊥平面BDE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)已知直線若直線關(guān)于對(duì)稱,又函數(shù)處的切線與平行,求實(shí)數(shù)的值;

2)若,證明:當(dāng)時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率為,已知也是拋物線的焦點(diǎn), 到準(zhǔn)線的距離為

1)求橢圓的方程和拋物線的方程;

2)過原點(diǎn)的直線交兩點(diǎn),點(diǎn)在第一象限,軸,垂足為,于另一點(diǎn).

①證明:三點(diǎn)共線

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知符號(hào)函數(shù)sgnxfx)是定義在R上的減函數(shù),gx)=fx)﹣fax)(a1),則(

A.sgn[gx]sgn xB.sgn[gx]=﹣sgnx

C.sgn[gx]sgn[fx]D.sgn[gx]=﹣sgn[fx]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Ey22pxp0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)Ax1,y1)和Bx2y2),其中x1x2x1+x24.線段AB的垂直平分線與x軸交于點(diǎn) C

1)求拋物線E的方程;

2)求ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

(1)求ab,c,d的值;

(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)過橢圓的右焦點(diǎn)作互相垂直的兩條直線、,其中直線交橢圓于兩點(diǎn),直線交直線點(diǎn),求證:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案