19.定義在R上的偶函數(shù)f(x)滿足f(x+3)=f(x).若f(2)>1,f(7)=a,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)

分析 根據(jù)題意,由函數(shù)f(x)的周期可得f(7)=f(-2),又由函數(shù)為偶函數(shù),可得f(-2)=f(2),可得a的取值范圍,即可得答案.

解答 解:∵f(x+3)=f(x),
∴函數(shù)f(x)是定義在R上的以3為周期,
∴f(7)=f(7-9)=f(-2),
又∵函數(shù)f(x)是偶函數(shù),
∴f(-2)=f(2),
∴f(7)=f(2)>1,
∴a>1,即a∈(1,+∞).
故選D.

點(diǎn)評(píng) 本題考查函數(shù)周期性、奇偶性的綜合運(yùn)用,關(guān)鍵是分析得到f(7)與f(2)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$夾角的度數(shù)為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“理想集合”.給出下列5個(gè)集合:
①M(fèi)={(x,y)|y=$\frac{1}{x}$};②M={(x,y)|y=x2-2x+2};③M={(x,y)|y=ex-2};
④M={(x,y)|y=lgx};⑤M={(x,y)|y=sin(2x+3)}.
其中所有“理想集合”的序號(hào)是(  )
A.①②B.③⑤C.②③⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則φ的最小值為( 。
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足z(1-2i)=2+i(其中i為虛數(shù)單位),則z的模為( 。
A.1B.$\sqrt{2}$C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意a,b∈[-1,1],當(dāng)a+b≠0時(shí),都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)求證:f(x)在[-1,1]上單調(diào)遞增;
(2)解不等式f(x-1)<f(2x-1);
(3)記P={x|y=f(x-c)},Q={x|y=f(x-c2)}.若P∩Q≠∅,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)(x∈R)是周期為4的奇函數(shù),且在[0,2]上的解析式為f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,則f($\frac{29}{4}$)+f($\frac{17}{6}$)=$\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)y=x2-2x+9,x∈[-1,2]的值域?yàn)閇8,12].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=2-x,g(x)=x-2B.$f(x)=|x|,g(x)=\sqrt{x^2}$
C.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x+1$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案