分析 (1)利用函數(shù)單調(diào)性的定義進(jìn)行證明:在區(qū)間[-1,1]任取x1、x2,且x1<x2,利用函數(shù)為奇函數(shù)的性質(zhì)結(jié)合已知條件中的分式,可以證得f(x1)-f(x2)<0,所以函數(shù)f(x)是[-1,1]上的增函數(shù).
(2)根據(jù)(1)中單調(diào)性,可得-1≤x-1<2x-1≤1,解得答案;
(3)由函數(shù)的定義域及函數(shù)的單調(diào)性求解.
解答 (1)證明:任取x1、x2∈[-1,1],且x1<x2,
則f(x1)-f(x2)=f(x1)+f(-x2)
∵$\frac{f({x}_{1})+f(-{x}_{2})}{{x}_{1}-{x}_{2}}$>0,x1-x2<0,
∴f(x1)-f(x2)<0.
則f(x)是[-1,1]上的增函數(shù).
(2)解:若f(x-1)<f(2x-1),則-1≤x-1<2x-1≤1,
解得:x∈(0,1],
故不等式f(x-1)<f(2x-1)的解集為(0,1];
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
P∩Q=∅,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
∴P∩Q≠∅,-1≤c≤2.
點(diǎn)評(píng) 本題考查了抽象函數(shù)的單調(diào)性與函數(shù)的值域、集合的關(guān)系等知識(shí)點(diǎn),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-3) | B. | (3,+∞) | C. | (-∞,-1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “至少有一個(gè)紅球”與“都是黑球” | |
B. | “恰有1個(gè)黑球”與“恰有2個(gè)紅球” | |
C. | “至少有一個(gè)黑球”與“至少有1個(gè)紅球” | |
D. | “至少有一個(gè)黑球”與“都是黑球” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | 3 | C. | 4 | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4,3 | B. | 4,-3 | C. | $\frac{1}{4},\frac{1}{3}$ | D. | $\frac{1}{4},-\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com