15.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y-x≥0\\ x-2y+2≥0\\ x≥0\end{array}\right.$若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為6,則m的值為( 。
A.2B.4C.8D.16

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}y-x≥0\\ x-2y+2≥0\\ x≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y-x=0}\\{x-2y+2=0}\end{array}\right.$,解得A(2,2),
化目標(biāo)函數(shù)z=mx+y(m>0)為y=-mx+z,
由圖可知,當(dāng)直線y=-mx+z過A時,直線在y軸上的截距最大,z有最大值為2m+2=6,得m=2.
故選:A.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.$\frac{3+i}{3-i}$=( 。
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|-1≤x≤3},B={x|x=2n-1.n∈Z},則A∩B=(  )
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),M,N為橢圓上的兩個不同的動點(diǎn),直線OM,ON的斜率分別為k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,點(diǎn)A在橢圓C上,|AF1|=2,∠F1AF2=60°,過F2與坐標(biāo)軸不垂直的直線l與橢圓C交于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P,Q的中點(diǎn)為N,在線段OF2上是否存在點(diǎn)M(m,0),使得MN⊥PQ?若存在,求實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E為PA的中點(diǎn),∠BAD=60°.
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線${x^2}-{\frac{y}{3}^2}$=1的左右兩焦點(diǎn)分別是F1,F(xiàn)2,若點(diǎn)P在雙曲線上,且∠F1PF2為銳角,則點(diǎn)P的橫坐標(biāo)的取值范圍是($\frac{\sqrt{7}}{2}$,+∞)∪(-∞,-$\frac{\sqrt{7}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,過M(2,1)的直線l的傾斜角為$\frac{π}{4}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直線l的參數(shù)方程與圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于A,B兩點(diǎn),求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的值.

查看答案和解析>>

同步練習(xí)冊答案