橢圓的左、右焦點(diǎn)分別為,且橢圓過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn),試判斷的大小是否為定值,并說(shuō)明理由.
(I);(II)是定值900  .

試題分析:(I)設(shè)橢圓的方程為,有,得,把代入橢圓方程得,從而求出,即可求出橢圓方程;(II)利用直線與圓錐曲線相交的一般方法,將直線方程與橢圓方程聯(lián)立方程組,利用韋達(dá)定理,求,繼而判定是否為定值。
試題解析:(I)設(shè)橢圓的方程為,由于焦點(diǎn)為, 可知,即,把代入橢圓方程得,解得,故橢圓的方程為;
(II)設(shè)直線的方程為,
聯(lián)立方程組可得,化簡(jiǎn)得:,
設(shè),則,又, ,由,
所以,所以,所以為定值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫(xiě)出的方程;
(2)若點(diǎn)在第一象限,證明當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,P為橢圓 上任意一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)動(dòng)圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓的左焦點(diǎn)作互相垂直的兩條直線,分別交橢圓于四點(diǎn),則四邊形面積的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等腰梯形中,,. 以為焦點(diǎn),且過(guò)點(diǎn)的雙曲線的離心率為;以,為焦點(diǎn),且過(guò)點(diǎn)的橢圓的離心率為,則的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為橢圓上一點(diǎn),為兩焦點(diǎn),,則橢圓的離心率        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點(diǎn))的面積為.試問(wèn):是否存在直線,使得?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案