分析 由內(nèi)角的范圍和平方關系求出sinA,由題意和三角形的面積公式求出c,由余弦定理求出a的值.
解答 解:由cosA=$\frac{4}{5}$和0<A<π得,
sinA=$\sqrt{1-co{s}^{2}A}=\frac{3}{5}$,
∵b=2,△ABC的面積S=3,
∴$\frac{1}{2}bcsinA=3$,則c=5,
由余弦定理得,a2=b2+c2-2bccosA
=4+25-$2×2×5×\frac{4}{5}$=13,
∴a=$\sqrt{13}$,
故答案為:$\sqrt{13}$.
點評 本題考查余弦定理,三角形的面積公式,以及平方關系的應用,注意內(nèi)角的范圍,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2$\sqrt{2}$,2$\sqrt{2}$) | B. | [-2,2$\sqrt{2}$) | C. | (-2$\sqrt{2}$,-2] | D. | [2,2$\sqrt{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com