16.已知函數(shù)f(x)=sin(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)函數(shù)h(x)=af$(\frac{x}{2})-{sin^2}$x,x∈[$\frac{π}{6},\frac{2π}{3}$],有最小值為-1,求a的值和函數(shù)h(x)的最大值.

分析 (1)根據(jù)對(duì)稱性求得φ,利用周期得出ω,得出f(x)的解析式,再計(jì)算f($\frac{π}{8}$);
(2)求出h(x)解析式,令t=cosx,得出關(guān)于t的二次函數(shù),根據(jù)對(duì)稱軸討論函數(shù)單調(diào)性,從而求出a的值.

解答 解:(1)∵f(x)=sin(ωx+ϕ)為偶函數(shù),且0<φ<π,∴φ=$\frac{π}{2}$;
∵函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$,
∴f(x)的周期T=$\frac{2π}{ω}=2×\frac{π}{2}$,∴ω=2,故f(x)=cos2x;
∴$f(\frac{π}{8})=cos\frac{π}{4}=\frac{{\sqrt{2}}}{2}$.      
(2)$h(x)=af(\frac{x}{2})-{sin^2}x=acosx-{sin^2}x={cos^2}x+acosx-1={(cosx+\frac{a}{2})^2}-\frac{a^2}{4}-1$
令t=cosx,$g(t)={(t+\frac{a}{2})^2}-\frac{a^2}{4}-1,t∈[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$
若$-\frac{a}{2}≤-\frac{1}{2}$時(shí),即a≥1,$g{(t)_{min}}=g(-\frac{1}{2})=-\frac{a}{2}-\frac{3}{4}=-1$,得$a=\frac{1}{2}$(舍去);
若$-\frac{1}{2}<-\frac{a}{2}<\frac{{\sqrt{3}}}{2}$時(shí),即-$\sqrt{3}<a<1$,$g{(t)_{min}}=g(-\frac{a}{2})=-\frac{a^2}{4}-1=-1$,得a=0,
此時(shí)$f(-\frac{1}{2})=-\frac{3}{4},f(\frac{{\sqrt{3}}}{2})=-\frac{1}{4}$,∴$f{(x)_{max}}=-\frac{1}{4}$.
若$-\frac{a}{2}≥\frac{{\sqrt{3}}}{2}$時(shí),即$a≤-\sqrt{3}$,$g{(x)_{min}}=g(\frac{{\sqrt{3}}}{2})=\frac{{\sqrt{3}}}{2}a-\frac{1}{4}=-1$,得$a=-\frac{{\sqrt{3}}}{2}$(舍去)
綜上,$a=0,f{(x)_{max}}=-\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì),二次函數(shù)的性質(zhì),分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)z=$\frac{1}{1+i}$+i(i為虛數(shù)單位),則|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.為了調(diào)查某班級(jí)的作業(yè)完成情況,將該班級(jí)的52名學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知5號(hào),18號(hào),44號(hào)同學(xué)在樣本中,那么樣本中還有一位同學(xué)的編號(hào)應(yīng)該是( 。
A.23B.27C.31D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$a={log_2}3,b={2^{-\frac{1}{3}}},c={log_{\frac{1}{3}}}\frac{1}{30}$,則a、b、c的大小關(guān)系是( 。
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法正確的是( 。
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,則$\vec a∥\vec b$D.若$\vec a≠\vec b$,則$\vec a$與$\vec b$不是共線向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把8個(gè)相同的小球全部放入編號(hào)為1,2,3,4的四個(gè)盒中,則不同的放法數(shù)為( 。
A.35B.70C.165D.1860

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān)與教育無(wú)關(guān)合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若點(diǎn)(-4,-2)在直線2x-y+m=0的下方,則m的取值范圍是m>6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知在數(shù)列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求證:1<an+1<an<2;
(2)求證:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求證:n<sn<n+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案