6.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,a-b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

分析 (1)由正弦定理及sinA=sin(B+C)=sinBcosC+cosBsinC,代入即可求得cosBsinC=sinB,即可證明sinC=tanB;
(2)由余弦定理c2=(b+1)2-2,由C為銳角,0<cosC<1,則$\frac{1}{2}$<b<1,根據(jù)函數(shù)的單調(diào)性即可求得c的取值范圍.

解答 解:(1)證明:由正弦定理可知:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,(R為外接圓半徑),
a=2RsinA,b=2RsinB,c=2RsinC,
a-b=bcosC.則sinA-sinB=sinBcosC,
由A=π-(A+B),sinA=sin(B+C)=sinBcosC+cosBsinC,
sinBcosC+cosBsinC-sinB=sinBcosC,
cosBsinC=sinB,tanB=$\frac{sinB}{cosB}$,
∴sinC=tanB;
(2)由余弦定理可知:c2=a2+b2-2abcosC=a2+b2-2a(a-b)=b2+2b-1=(b+1)2-2,
由a-b=bcosC.則b=$\frac{a}{1+sinC}$=$\frac{1}{1+sinC}$,
由C為銳角,0<cosC<1,則$\frac{1}{2}$<b<1,
由f(b)=(b+1)2-2,在($\frac{1}{2}$,1)上單調(diào)遞增,
f(b)∈($\frac{1}{4}$,2),
∴$\frac{1}{2}$<c<$\sqrt{2}$,
∴c的取值范圍($\frac{1}{2}$,$\sqrt{2}$).

點(diǎn)評(píng) 本題考查正弦定理及余弦定理的應(yīng)用,考查二次函數(shù)的性質(zhì),兩角和的正弦公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A(0,-1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點(diǎn),點(diǎn)F是拋物線C的焦點(diǎn),點(diǎn)P在拋物線C上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線上,則此雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線y=x+1被曲線$y=\frac{1}{2}{x^2}-1$截得的線段AB的長(zhǎng)為$2\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.甲、乙兩個(gè)同學(xué)下棋,若甲獲勝的概率0.3,甲、乙下成和棋的概率為0.4,則乙贏的概率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.執(zhí)行圖所示的程序框圖,則輸出的S的值為63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a:b:c=2:4:3,則△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某企業(yè)有員工75人,其中男員工有30人,為作某項(xiàng)調(diào)查,擬采用分層抽樣的方法抽取容量為20的樣本,則女員工應(yīng)抽取的人數(shù)是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=|sinx|•cosx,則下列說法正確的是( 。
A.f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱B.f(x)在區(qū)間上[$\frac{π}{4}$,$\frac{3π}{4}$]單調(diào)遞減
C.若|f(x1)|=|f(x2)|,則x1=x2+2kπ(k∈Z)D.f(x)的周期為π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)A(2,-3),B(-3,-2),直線m過P(1,1),且與線段AB相交,求直線m的斜率k的取值范圍為( 。
A.$k≥\frac{3}{4}或k≤-4$B.$k≥\frac{3}{4}或k≤-\frac{1}{4}$C.-4≤k≤$\frac{3}{4}$D.$\frac{3}{4}$≤k≤4

查看答案和解析>>

同步練習(xí)冊(cè)答案