(1)解不等式x|x-1|-2<|x-2|;
(2)已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z
考點:綜合法與分析法(選修),絕對值不等式的解法
專題:計算題
分析:(1)分①當(dāng)x≥2、當(dāng)1≤x<2、當(dāng)x<1三種情況,分別求出不等式的解集,再取并集,即得所求.
(2)利用基本不等式證得
x
yz
+
y
zx
=
1
z
(
x
y
+
y
x
)≥
2
z
,同理可得
y
zx
+
z
xy
2
x
z
xy
+
x
yz
2
y
,將上述三個不等式兩邊分別相加,并除以2,即得要證的不等式.
解答: 解:(1)①當(dāng)x≥2時,原不等式為x(x-1)-2<x-2⇒0<x<2.又x≥2,∴x∈∅.
②當(dāng)1≤x<2時,原不等式x(x-1)-2<2-x⇒-2<x<2.又1≤x<2,∴1≤x<2.
③當(dāng)x<1時,原不等式x(1-x)-2<2-x⇒x∈R,又x<1,∴x<1.
綜上:原不等式的解集為{x|x<2}.
(2)證明:因為x,y,z均為正數(shù).所以
x
yz
+
y
zx
=
1
z
(
x
y
+
y
x
)≥
2
z
,
同理可得
y
zx
+
z
xy
2
x
,
z
xy
+
x
yz
2
y
,
當(dāng)且僅當(dāng)x=y=z時,以上三式等號都成立.
將上述三個不等式兩邊分別相加,并除以2,得
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z
點評:本題主要考查絕對值不等式的解法,用綜合法證明不等式,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的兩根分別為x1、x2,且0<x1<1<x2,則
b
a
的取值范圍是(  )
A、[-2,-
1
2
]
B、(-2,-
1
2
]
C、[
1
2
,2]
D、(
1
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
4
+y2=1的左、右焦點分別為F1,F(xiàn)2,M為橢圓上異于長軸端點的一點,∠F1MF2=2θ,△MF1F2的內(nèi)心為I,則|MI|COSθ=( 。
A、2-
3
B、
1
2
C、
2
2
D、
2-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤-x+2
y≥kx+1
x≥0
所表示的平面區(qū)域為面積等于1的三角形,則實數(shù)k的值為(  )
A、-1
B、-
1
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log327的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+a
ex

(Ⅰ)若函數(shù)f(x)在x=0處的切線l0與x=1處的切線l1相互平行,求實數(shù)a的值及此時函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若0<a<4,求證:exf(x)<(a+1+aexlnx)(x2+ax+a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5件產(chǎn)品中,3件正品,從中任取2件,X是取出的次品件數(shù).
(1)計算X的分布列;   
(2)計算X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將4個不相同的小球放入編號為1、2、3的3個盒子中,當(dāng)某個盒子中球的個數(shù)等于該盒子編號時稱為一個和諧盒,則恰有兩個和諧盒的概率為(  )
A、
2
81
B、
4
81
C、
12
81
D、
16
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα+cosβ+cosγ=0,且sinα+sinβ+sinγ=0.求cos2(α-β)+cos2(β-γ)+cos2(γ-α)的值.

查看答案和解析>>

同步練習(xí)冊答案