【題目】如圖,在三棱錐中,,,,,且在平面上的射影在線段

)求證:;

)設二面角,求的余弦值

【答案】詳見解析

【解析】

試題分析:證明線線垂直,一般利用線面垂直性質定理進行論證;因為在平面上的射影在線段上,所以,又根據勾股定理可得,因此二面角,一般方法為利用空間向量,先根據題意建立空間直角坐標系設立點坐標,利用方程組解出各面法向量,再根據向量數(shù)量積求法向量夾角,最后根據二面角與法向量之間相等或互補的關系求二面角

試題解析:)證明:,,

,

,

)解:(法一)作垂足為,連接,

為二面角的平面角

中,,,,

,,

中,,

,

,又,,又,,

(法二)在中,,,

,,,

中,,

,,又,,

如圖建立直角坐標系,

,,,

平面的法向量為,

平面的法向量為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實常數(shù),函數(shù)

(1)當時,求的單調區(qū)間;

(2)設,不等式的解集為,不等式的解集為,當時,是否存在正整數(shù),使得成立.若存在,試找出所有的m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)若,求直線以及曲線的直角坐標方程;

2)若直線與曲線交于兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四人進行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標系中方格內的16個棋子(如圖所示),甲從中記下某個棋子的坐標;第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標.告訴丙棋子的縱坐標,告訴丁棋子的橫坐標與縱坐標相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋數(shù)學家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表中數(shù)表為“森德拉姆篩”,其特點是每行每列都成等差數(shù)列,記第i行,第j列的數(shù)為aij,則數(shù)字41在表中出現(xiàn)的次數(shù)為(  )

 2

 3

 4

 5

 6

 7

 3

 5

 7

 9

 11

 13

 4

 7

 10

 13

 16

 19

 5

 9

 13

 17

 21

 25

 6

 11

 16

 21

 26

 31

 7

 13

 19

 25

 31

 37

A.4B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上兩個不同的點、關于直線對稱.

1)若已知為橢圓上動點,證明:

2)求實數(shù)的取值范圍;

3)求面積的最大值(為坐標原點).

查看答案和解析>>

同步練習冊答案