【題目】如圖, 四棱錐中, 平面平面,為線段上一點,為的中點.
(1)證明: 平面;
(2)求二面角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)連接,設,可證四邊形為平行四邊形,得是的中點,利用三角形中位線定理可得進而由線面平行的判定定理可得結論;(2)先證平面,分別以所在直線為軸, 軸, 為軸正方向,空間直角坐標系,分別求出平面和平面的法向量,利用空間向量夾角余弦公式可得二面角的余弦值,進而得結果.
試題解析:(1)證明: 連接,設,連接,四邊形為平行四邊形, 且是的中點, 又為的中點, 平面平面平面.
(2)取的中點,連接,由得平面平面,平面平面平面,在中,, 在等腰中,, 以為坐標原點, 分別以所在直線為軸, 軸, 為軸正方向, 建立如圖所示的空間直角坐標系,由題知,
設是平面的法向量, 則,即.
設是平面的法向量, 則,即得.
,二面角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四面體的頂點、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )
A. 是正三棱錐
B. 直線與平面相交
C. 直線與平面所成的角的正弦值為
D. 異面直線和所成角是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等比數(shù)列的前n項和為Sn,已知a1=2,且4S1,3S2,2S3成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】迭代法是用于求方程或方程組近似根的一種常用的算法設計方法.設方程為,用某種數(shù)學方法到處等價的形式,然后按以下步驟執(zhí)行:
(1)選一個方程的近似根,賦給變量;
(2)將的值保存于變量,然后計算,并將結果存于變量;
(3)當與的差的絕對值還小于指定的精度要求時,重復步驟(2)的計算.若方程有根,則按上述方法求得的就認為是方程的根.試用迭代法求某個數(shù)的平方根,用流程圖和偽代碼表示問題的算法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人).現(xiàn)用分層抽樣方法(按類,類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)類工人和類工人中個抽查多少工人?
(2)從類工人中的抽查結果和從類工人中的抽查結果分別如下表1和表2.
表1:
表2:
① 先確定,,再完成下列頻率分布直方圖,就生產(chǎn)能力而言,類工人中個體間的差異程度與類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
② 分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中
的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是12.
(1)求的解析式;
(2)是否存在自然數(shù),使得方程在區(qū)間內有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用的信息如下圖.
(1)求;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com