【題目】已知 .
(1)若函數(shù) 的圖象在點(diǎn) 處的切線平行于直線 ,求 的值;
(2)討論函數(shù) 在定義域上的單調(diào)性;
(3)若函數(shù) 上的最小值為 ,求 的值.

【答案】
(1)解:

由題意可知 ,故


(2)解:

當(dāng) 時(shí),因?yàn)? ,故 為增函數(shù);

當(dāng) 時(shí),由 ;由 ,

所以增區(qū)間為 ,減區(qū)間為 ,

綜上所述,當(dāng) 時(shí), 為增函數(shù);當(dāng) 時(shí), 的減區(qū)間為 ,增區(qū)間為


(3)解: 由(2)可知,當(dāng) 時(shí),函數(shù) 上單調(diào)遞增,

故有 ,所以 不合題意,舍去.

當(dāng) 時(shí), 的減區(qū)間為 ,增區(qū)間為

,則函數(shù) 上單調(diào)遞減,

不合題意,舍去.

時(shí),函數(shù) 上單調(diào)遞增,

,所以 不合題意,舍去.

時(shí), ,

解得 ,

綜上所述,


【解析】(1)求出原函數(shù)的導(dǎo)函數(shù)由已知函數(shù) f ( x ) 的圖象在點(diǎn) ( 1 , f ( 1 ) ) 處的切線即為 f ′ ( 1 ) = 1 + a = 1,求出a的值。(2)對(duì)(1)中的導(dǎo)函數(shù)進(jìn)行分析,由a的不同取值范圍得到導(dǎo)函數(shù)的正負(fù)進(jìn)而得出原函數(shù)f(x) 的增減性并得到相應(yīng)的增減區(qū)間。(3)利用(2)的結(jié)論,對(duì)a分情況討論分別求出各種情況下的函數(shù)在區(qū)間上的最小值令其等于,求解出a的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD底面是一個(gè)棱長(zhǎng)為2的菱形,且∠DAB=60°,各側(cè)面和底面所成角均為60°,則此棱錐內(nèi)切球體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對(duì)于任意的上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中,已知 , , 底面 ,且 , , 的中點(diǎn), 上,且 .

(1)求證:平面 平面
(2)求證: 平面 ;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形ABCD中, 是邊長(zhǎng)為2的等邊三角形,AB=5.沿CE將 折起,使B至 處,且 ;然后再將 沿DE折起,使A至 處,且面 面CDE, 在面CDE的同側(cè).

(Ⅰ) 求證: 平面CDE;
(Ⅱ) 求平面 與平面CDE所構(gòu)成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年10月18日至24日,中國(guó)共產(chǎn)黨第十九次全國(guó)人民代表大會(huì)在北京順利召開(kāi).大會(huì)期間,北京某高中舉辦了一次“喜迎十九大”的讀書(shū)讀報(bào)知識(shí)競(jìng)賽,參賽選手為從高一年級(jí)和高二年級(jí)隨機(jī)抽取的各100名學(xué)生.圖1和圖2分別是高一年級(jí)和高二年級(jí)參賽選手成績(jī)的頻率分布直方圖.

(1)分別計(jì)算參加這次知識(shí)競(jìng)賽的兩個(gè)年級(jí)學(xué)生的平均成績(jī);

(2)完成下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下,認(rèn)為高一、高二兩個(gè)年級(jí)學(xué)生這次讀書(shū)讀報(bào)知識(shí)競(jìng)賽的成績(jī)有差異.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當(dāng)二面角A﹣PB﹣E的余弦值為多少時(shí),直線PC與平面PAB所成的角為45°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1 + =1,圓C2:x2+y2=t經(jīng)過(guò)橢圓C1的焦點(diǎn).
(1)設(shè)P為橢圓上任意一點(diǎn),過(guò)點(diǎn)P作圓C2的切線,切點(diǎn)為Q,求△POQ面積的取值范圍,其中O為坐標(biāo)原點(diǎn);
(2)過(guò)點(diǎn)M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點(diǎn)A,B,C,D,若|AB|=|CD|,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案