分析 (1)由n∈N*,f(n)=3n+7n-2,分別取n=1,2,3,能求出f(1),f(2),f(3)的值.
(2)利用用數(shù)學(xué)歸納法能證明對(duì)任意正整數(shù)n,f(n)是8的倍數(shù).
解答 解:(1)∵n∈N*,f(n)=3n+7n-2,
∴f(1)=3+7-2=8,
f(2)=32+72-2=56,
f(3)=33+73-2=368.
證明:(2)用數(shù)學(xué)歸納法證明如下:
①當(dāng)n=1時(shí),f(1)=3+7-2=8,成立;
②假設(shè)當(dāng)n=k時(shí)成立,即f(k)=3k+7k-2能被8整除,
則當(dāng)n=k+1時(shí),
f(k+1)=3k+1+7k+1-2
=3×3k+7×7k-2
=3(3k+7k-2)+4×7k+4
=3(3k+7k-2)+4(7k+1),
∵3k+7k-2能被8整除,7k+1是偶數(shù),
∴3(3k+7k-2)+4(7k+1)一定能被8整除,
即n=k+1時(shí)也成立.
由①②得:對(duì)任意正整數(shù)n,f(n)是8的倍數(shù).
點(diǎn)評(píng) 本題考查函數(shù)值的求法,考查函數(shù)值是8的倍數(shù)的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審,注意數(shù)學(xué)歸納法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{5π}{4}$ | C. | $-\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | log0.56>log0.54 | B. | 90.9>270.48 | C. | ${2.5^0}<{\frac{1}{2}^{2.5}}$ | D. | 0.60.5>0.60.3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com