某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如表:
 認(rèn)為作業(yè)多認(rèn)為作業(yè)不多
喜歡玩電腦游戲1310
不喜歡玩電腦游戲720
為了檢驗(yàn)“喜歡玩電腦游戲與認(rèn)為作業(yè)多”是否有關(guān)系,根據(jù)表中數(shù)據(jù),得到
k=
50(13×20-10×7)2
23×27×20×30
≈4.844對(duì)照臨界值表,有
 
的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)多”之間有相關(guān)關(guān)系.
考點(diǎn):獨(dú)立性檢驗(yàn)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)條件中所給的計(jì)算出的觀測(cè)值的數(shù)據(jù),把觀測(cè)值同臨界值進(jìn)行比較,得到認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握為95%.
解答: 解:根據(jù)表中數(shù)據(jù)得到K2=
50(13×20-10×7)2
23×27×20×30
≈4.844,
因?yàn)镻(K2≥3.841)=0.05,
所以有95%的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)多”之間有相關(guān)關(guān)系.
故答案為:95%.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,本題解題的關(guān)鍵是理解臨界值對(duì)應(yīng)的概率的應(yīng)用,能夠正確的說(shuō)出概率的意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin510°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-x-12>0},B={x|-2≤x≤6},則(∁RA)∪B=( 。
A、RB、[-3,6]
C、[-2,4]D、(-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+m
2x-1
為奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)用定義證明函數(shù)f(x)在區(qū)間(0,+∞)上為單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x≤3
x+y≥0
x-y≥0
表示的平面區(qū)域的面積等于         (  )
A、
9
2
B、6
C、9
D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假期間某班為了增強(qiáng)學(xué)生的社會(huì)實(shí)踐能力,把該班學(xué)生分成四個(gè)小組到一果園班果農(nóng)測(cè)量他們果樹的產(chǎn)量,某小組來(lái)到一片種子砂糖橘的山地,他們隨即選取20株作為樣本測(cè)量每一株的果實(shí)產(chǎn)量(單位:kg),獲得的數(shù)據(jù)按照區(qū)間(40,45],(45,50]、(50,55]、(55,60]進(jìn)行分組,得到如下頻率分布表,已知樣本產(chǎn)量在區(qū)間(45,50]上的果樹數(shù)量是產(chǎn)量在區(qū)間(50,60]上果樹株數(shù)的
4
3
倍           
分組(40,45](45,50](50,55](55,60]合計(jì)
頻率0.3a0.1bC
(1)分別求出a,b,c的值
(2)作出頻率分布直方圖
(3)根據(jù)頻率分布直方圖估計(jì)樣本平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+2x-6,用二分法求方程2x+2x-6=0在x∈(1,3)內(nèi)近似解的過(guò)程中,取區(qū)間中點(diǎn)x0=2,那么下一個(gè)有根區(qū)間為( 。
A、(1,2)
B、(2,3)
C、(2,2.5)
D、(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a>1,b>1,如下四個(gè)結(jié)論:
①若lna+2a=lnb+3b,則a>b;
②若lna+2a=lnb+3b,則a<b;
③若lna-2a=lnb-3b,則a>b;
④若lna-2a=lnb-3b,則a<b.
則下列命題成立的是(  )
A、①④B、②③C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其正視圖是直角三角形,側(cè)視圖是等腰三角形,俯視圖是半圓.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案