【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母FG、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.

【答案】
(1)解:點FGH的位置如圖所示.

(2)解:平面BEC∥平面ACH . 證明如下:
因為ABCDEFGH為正方體,所以BCFG , BCFG
FGEH , FGEH , 所以BCEH , BCEH ,
于是四邊形BCEH為平行四邊形,
所以BECH ,
CH平面ACH , BE平面ACH ,
所以BE∥平面ACH ,
同理,BG∥平面ACH ,
BEBGB ,
所以平面BEG∥平面ACH
(3)證明:連接FHEG于點O , 連接BD
因為ABCDEFGH為正方體,所以DH⊥平面EFGH ,
因為EG平面EFGH , 所以DHEG ,
EGFH , EGFHO ,
所以EG⊥平面BFHD ,
DF平面BFHD , 所以DFEG ,
同理DFBG
EGBGG ,
所以DF⊥平面BEG
【解析】(1)將該正方體的展開還原為空間幾何體即可。
(2)重點考查了平面與平面平行的判定:一個平面內的兩條相交直線平行于另一個平面,則這兩平面平行.
(3)重點考查了直線與平面垂直的判定:若一條直線垂直于一個平面內兩條相交直線,則該直線與此平面垂直。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的 列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關?

非體育迷

體育迷

合計

合計

(參考公式 ,其中 .)

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 表示三條不同的直線, 表示三個不同的平面,給出下列三個命題:①若 ,則 ;②若 內的射影, ,則 ;③若 . 其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 為圓 上的動點, 的坐標為 , 在線段 上,滿足 .
(Ⅰ)求 的軌跡 的方程.
(Ⅱ)過點 的直線 交于 兩點,且 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三角形的邊長為2,將它沿高翻折,使點與點間的距離為,此時四面體外接球表面積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品在30天內每克的銷售價格(元)與時間的函數(shù)圖像是如圖所示的兩條線段,(不包含,兩點);該商品在 30 天內日銷售量(克)與時間(天)之間的函數(shù)關系如下表所示.

5

1

5

2

0

3

0

銷售量

3

5

2

5

2

0

1

0

(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關系式;

(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關系式;

(3)在(2)的基礎上求該商品的日銷售金額的最大值,并求出對應的.

(注:日銷售金額=每克的銷售價格×日銷售量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

I)若,求在區(qū)間上的最大值和最小值;

II)解關于x的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出的 值為3,則輸入 的值可以是( )

A.20
B.21
C.22
D.23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2+(1+a)x+a+b+1=0的兩個實根為x1,x2,且0<x1<1,x2>1,則 的取值范圍是( )
A.(-2,-
B.(-1,-
C.(-2,
D.(-1,

查看答案和解析>>

同步練習冊答案