已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,-3),點P的橫坐標為14,且數(shù)學(xué)公式,點Q是邊AB上一點,且數(shù)學(xué)公式
(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求數(shù)學(xué)公式的取值范圍.

解:(1)設(shè)P(14,y),則,由,得(14,y)=λ(-8,-3-y),解得,所以點P(14,-7).
(2)設(shè)點Q(a,b),則,又,則由,得3a=4b①又點Q在邊AB上,所以,即3a+b-15=0②
聯(lián)立①②,解得a=4,b=3,所以點Q(4,3).
(3)因為R為線段OQ上的一個動點,故設(shè)R(4t,3t),且0≤t≤1,則,,,則=,故的取值范圍為
分析:(1)先設(shè)P(14,y),分別表示,然后由,建立關(guān)于y的方程可求y.
(2)先設(shè)點Q(a,b),則可表示向量,由,可得3a=4b,再由點Q在邊AB上可得①②,從而可解a,b,進而可得Q的坐標.
(3)由R為線段OQ上的一個動點可設(shè)R(4t,3t),且0≤t≤1,則有分別表示,,由向量的數(shù)量積整理可得,利用二次函數(shù)的知識可求取值范圍.
點評:平面向量與函數(shù)的綜合問題中,向量的數(shù)量積、向量的平行一般是作為轉(zhuǎn)化的基本工具,最后轉(zhuǎn)化為函數(shù)的問題,二次函數(shù)在閉區(qū)間上的最值是求解是函數(shù)性質(zhì)應(yīng)用中容易出現(xiàn)錯誤的地方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,-3),點P的橫坐標為14,且
OP
PB
,點Q是邊AB上一點,且
OQ
AP
=0

(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期末題 題型:解答題

已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,-3), 點P的橫坐標為14,且,點Q是邊AB上一點,且。
(Ⅰ)求實數(shù)λ的值與點P的坐標;
(Ⅱ)求點Q的坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,-3),點P的橫坐標為14,且
OP
PB
,點Q是邊AB上一點,且
OQ
AP
=0

(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市常熟市高一(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,-3),點P的橫坐標為14,且,點Q是邊AB上一點,且
(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案