1.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,1]內(nèi)遞減,那么實數(shù)a的取值范圍為(  )
A.a≤2B.a≤0C.a≥2D.a≥0

分析 若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,1]內(nèi)遞減,則1-a≥1,解得答案.

解答 解:函數(shù)f(x)=x2+2(a-1)x+2的圖象是開口朝上,且以直線x=1-a為對稱軸的拋物線,
若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,1]內(nèi)遞減,
則1-a≥1,
解得:a≤0,
故選:B

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(e2,f(e2))處的切線與直線2x+y=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的解析式及單調(diào)遞減區(qū)間;
(2)若存在x0∈[e,+∞),使函數(shù)g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一平面過半徑為R的球O的半徑OA的中點,且垂直于該半徑OA,則該平面截球的截面面積為( 。
A.$\frac{1}{2}π{R^2}$B.$\frac{{\sqrt{3}}}{2}π{R^2}$C.πR2D.$\frac{3}{4}π{R^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等差數(shù)列{an}和{bn},其前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$等于( 。
A.$\frac{72}{13}$B.$\frac{135}{22}$C.$\frac{79}{14}$D.$\frac{142}{23}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an}滿足:a1=1,an+1=2an+2n,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設集合A={x|x>-1},B={x|-2<x<2},則集合A∩B等于{x|-1<x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知3cosBcosC+1=3sinBsinC+cos2A.
(1)求A的大;
(2)若$a=2\sqrt{3}$,求b+2c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.冪函數(shù)y=f(x)的圖象經(jīng)過點$({4,\frac{1}{2}})$,則$f({\frac{1}{4}})$=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線C的左、右焦點為F1,F(xiàn)2,P為C的右支上動點(非頂點),I為△F1PF2的內(nèi)心.當P變化時,I的軌跡為( 。
A.雙曲線的一部分B.橢圓的一部分C.直線的一部分D.無法確定

查看答案和解析>>

同步練習冊答案