分析 求出$\overrightarrow{AB}$,利用向量相等,列出方程,求解即可.
解答 解:A(1,3),B(2,4),$\overrightarrow{a}$=(2x-1,x2+3x-3),
$\overrightarrow{AB}$=(1,1),
$\overrightarrow{a}$=$\overrightarrow{AB}$,
可得:(2x-1,x2+3x-3)=(1,1),
即$\left\{\begin{array}{l}{2x-1=1}\\{{x}^{2}+3x-3=1}\end{array}\right.$,
解得x=1.
故答案為:1.
點評 本題考查向量的坐標運算,向量相等的充要條件的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{{π}^{2}}$ | B. | $\frac{2}{π}$+$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{{π}^{2}}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | -$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4x±y=0 | B. | x±4y=0 | C. | 2x±y=0 | D. | x±2y=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 14 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com