利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“4a-1<0”發(fā)生的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
2
3
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由題意,本題是幾何概型的概率求法,只要明確區(qū)域的長(zhǎng)度,利用概率公式解答.
解答: 解:利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,a的對(duì)應(yīng)區(qū)域長(zhǎng)度為1,事件“4a-1<0”即x<
1
4
,此區(qū)域長(zhǎng)度為
1
4
,
由幾何概型概率公式得
1
4
;
故選C.
點(diǎn)評(píng):本題考查了幾何概型概率的求法,關(guān)鍵是明確事件對(duì)應(yīng)的區(qū)域的長(zhǎng)度或者面積或者體積,利用幾何概型概率公式可求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若2sinB=
3
b,a=1,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,lgx+lgy=1,求x+3y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線x2-
y2
m
=1的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則此雙曲線的漸近線方程為( 。
A、x±y=0
B、
3
x±y=0
C、
5
x±y=0
D、
15
x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面是正方形的四棱錐P-ABCD,PC⊥底面ABCD,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)若E為PC的中點(diǎn),求證:PA∥面BDE;
(2)證明:不論點(diǎn)E在何位置,都有BD⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°
(Ⅰ)求證:EF⊥平面BCE;
(Ⅱ)設(shè)線段CD的中點(diǎn)為P,在直線AE上是否存在一點(diǎn)M,使得PM∥平面BCE?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且PD=AB=a,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
(Ⅰ)求證:EF⊥BC;
(Ⅱ)求點(diǎn)B到平面CEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線的漸近線為y=±2x,則此雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的是
 

(1)若a,b為無理數(shù),則a+b為無理數(shù);
(2)ac<0是二次方程ax2+bx+c=0有解的充要條件;
(3)A∩C=C是C⊆A的充分不必要條件;
(4)若a=b=0,則ab=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案