A. | B. | ||||
C. | D. |
分析 利用導(dǎo)函數(shù)符號(hào)判斷函數(shù)的單調(diào)性,然后推出結(jié)果即可.
解答 解:由題意可知,x<-1時(shí),f′(x)<0,函數(shù)是減函數(shù),-1<x<1時(shí),f′(x)>0,函數(shù)是增函數(shù);
x>1時(shí),f′(x)<0,函數(shù)是減函數(shù),
可以判斷函數(shù)的圖象為D.
故選:D.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)的圖象的關(guān)系,函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 關(guān)于直線(xiàn)$x=\frac{π}{4}$對(duì)稱(chēng) | B. | 關(guān)于直線(xiàn)$x=-\frac{π}{4}$對(duì)稱(chēng) | ||
C. | 關(guān)于直線(xiàn)$x=\frac{π}{2}$對(duì)稱(chēng) | D. | 關(guān)于直線(xiàn)$x=-\frac{π}{2}$對(duì)稱(chēng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-sinx | B. | x-sinx | C. | sinx+xcosx | D. | cosx-xsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,3) | B. | $({3,\frac{16}{3}})$ | C. | (0,2) | D. | $({0,3})∪({\frac{16}{3},+∞})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com