【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)若為R上的偶函數(shù),且關(guān)于x的不等式在上恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1),偶函數(shù);,奇函數(shù);,非奇非偶函數(shù),理由見(jiàn)解析;(2).
【解析】
(1)根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)f(x)的奇偶性;
(2)由題意可得在(﹣∞,0)上恒成立,求出右邊函數(shù)的取值范圍,可得k的不等式,解不等式即可得到所求范圍.
(1)f(﹣x)=2﹣x+m2x,
若f(x)是偶函數(shù),則f(﹣x)=f(x),即2﹣x+m2x=2x+m2﹣x,
所以(m﹣1)(2x﹣2﹣x)=0對(duì)任意實(shí)數(shù)x成立,所以m=1;
若f(x)是奇函數(shù),則f(﹣x)=﹣f(x),即2﹣x+m2x=﹣2x﹣m2﹣x,
所以(m+1)(2x+2﹣x)=0對(duì)任意實(shí)數(shù)x成立,所以m=﹣1.
綜上,當(dāng)m=1時(shí),f(x)是偶函數(shù);當(dāng)m=﹣1時(shí),f(x)是奇函數(shù);當(dāng)m≠±1時(shí),f(x)既不是奇函數(shù)也不是偶函數(shù).
(2)f(x)0,3k2+1>0,
且2kf(x)>3k2+1在(﹣∞,0)上恒成立,
故原不等式等價(jià)于在(﹣∞,0)上恒成立,
又x∈(﹣∞,0),所以f(x)∈(2,+∞),
所以,
從而,即有3k2﹣4k+1≤0,
因此,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)境保護(hù)部門(mén)對(duì)某處的環(huán)境狀況用“污染指數(shù)”來(lái)監(jiān)測(cè),據(jù)測(cè)定,該處的“污染指數(shù)”與附近污染源的強(qiáng)度和距離之比成正比,比例系數(shù)為常數(shù),現(xiàn)已知相距的兩家化工廠(chǎng)(污染源)的污染強(qiáng)度分別為1和,它們連線(xiàn)段上任意一點(diǎn)處的污染指數(shù)等于兩化工廠(chǎng)對(duì)該處的污染指數(shù)之和,設(shè);
(1)試將表示為的函數(shù),指出其定義域;
(2)當(dāng)時(shí),處的“污染指數(shù)”最小,試求化工廠(chǎng)的污染強(qiáng)度的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年國(guó)慶黃金周影市火爆依舊,《我和我的祖國(guó)》、《中國(guó)機(jī)長(zhǎng)》、《攀登者》票房不斷刷新,為了解我校高三2300名學(xué)生的觀影情況,隨機(jī)調(diào)查了100名在校學(xué)生,其中看過(guò)《我和我的祖國(guó)》或《中國(guó)機(jī)長(zhǎng)》的學(xué)生共有80位,看過(guò)《中國(guó)機(jī)長(zhǎng)》的學(xué)生共有60位,看過(guò)《中國(guó)機(jī)長(zhǎng)》且看過(guò)《我和我的祖國(guó)》的學(xué)生共有50位,則該校高三年級(jí)看過(guò)《我和我的祖國(guó)》的學(xué)生人數(shù)的估計(jì)值為( )
A.1150B.1380C.1610D.1860
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由個(gè)不同的數(shù)構(gòu)成的數(shù)列中,若時(shí),(即后面的項(xiàng)小于前面項(xiàng)),則稱(chēng)與構(gòu)成一個(gè)逆序,一個(gè)有窮數(shù)列的全部逆序的總數(shù)稱(chēng)為該數(shù)列的逆序數(shù).如對(duì)于數(shù)列3,2,1,由于在第一項(xiàng)3后面比3小的項(xiàng)有2個(gè),在第二項(xiàng)2后面比2小的項(xiàng)有1個(gè),在第三項(xiàng)1后面比1小的項(xiàng)沒(méi)有,因此,數(shù)列3,2,1的逆序數(shù)為;同理,等比數(shù)列的逆序數(shù)為.
(1)計(jì)算數(shù)列的逆序數(shù);
(2)計(jì)算數(shù)列()的逆序數(shù);
(3) 已知數(shù)列的逆序數(shù)為,求的逆序數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中真命題是
A. 同垂直于一直線(xiàn)的兩條直線(xiàn)互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過(guò)空間任一點(diǎn)與兩條異面直線(xiàn)都垂直的直線(xiàn)有且只有一條
D. 過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為A、B,坐標(biāo)原點(diǎn)到直線(xiàn)AB的距離為,且.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左焦點(diǎn)的直線(xiàn)交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)C:與直線(xiàn)交于A、B兩點(diǎn).
(1)當(dāng)取得最小值為時(shí),求的值.
(2)在(1)的條件下,過(guò)點(diǎn)作兩條直線(xiàn)PM、PN分別交拋物線(xiàn)C于M、N(M、N不同于點(diǎn)P)兩點(diǎn),且的平分線(xiàn)與軸平行,求證:直線(xiàn)MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球教練對(duì)甲乙兩位運(yùn)動(dòng)員在近五場(chǎng)比賽中的得分情況統(tǒng)計(jì)如下圖所示,根據(jù)圖表給出如下結(jié)論:(1)甲乙兩人得分的平均數(shù)相等且甲的方差比乙的方差;(2)甲乙兩人得分的平均數(shù)相等且甲的方差比乙的方差大;(3)甲的成績(jī)?cè)诓粩嗵岣撸业某煽?jī)無(wú)明顯提高;(4)甲的成績(jī)較穩(wěn)定,乙的成續(xù)基本呈上升狀態(tài);結(jié)論正確的是( )
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com