10.下列有關(guān)命題的敘述,其中錯(cuò)誤的個(gè)數(shù)為( 。
①若p∨q為真命題,則p∧q也為真命題
②“x>5”是“x2-4x-5>0”的充分不必要條件
③命題:?x∈R,2x>x2的否定為:?x0∉R,2${\;}^{{x}_{0}}$≤x02;
④?x∈R,使得ex=1+x是真命題.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 ①,若p∨q為真命題,則p、q至少一個(gè)為真命題,則p∧q也不一定為真命題;
②,“x>5”⇒“x2-4x-5>0”;“x2-4x-5>0”⇒“x>5或x<-1“;
③,命題:?x∈R,2x>x2的否定為:?x0∈R,2${\;}^{{x}_{0}}$≤x02;
④,當(dāng)x=0,ex=1+x.

解答 解:對(duì)于①,若p∨q為真命題,則p、q至少一個(gè)為真命題,則p∧q也不一定為真命題,故錯(cuò);
對(duì)于②,“x>5”⇒“x2-4x-5>0”;“x2-4x-5>0”⇒“x>5或x<-1“,故正確;
對(duì)于③,命題:?x∈R,2x>x2的否定為:?x0∈R,2${\;}^{{x}_{0}}$≤x02,故錯(cuò);
對(duì)于④,當(dāng)x=0,ex=1+x,故正確.
故選:B

點(diǎn)評(píng) 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow$,$\overrightarrow{CD}$=λ($\overrightarrow{a}$-$\overrightarrow$),且A、B、D三點(diǎn)共線,則λ的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某小區(qū)內(nèi)有一條形狀如圖的溝渠,溝沿是兩條平行線段,溝渠寬AB為20厘米,溝渠的直截面ABO為一段拋物線,拋物線頂點(diǎn)為O,對(duì)稱軸與地面垂直,溝渠深20厘米,溝渠中水深10厘米.
(1)求水面寬為多少厘米;
(2)若要把這條溝渠改挖(不準(zhǔn)填土)成直截面為等腰梯形的溝渠,是溝渠的底面與地面平行,則改挖后的溝渠底部寬為多少厘米時(shí),所挖土最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},集合B=Z,則A∩B=( 。
A.{1}B.[0,2]C.(0,2)D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定義域;
(2)求f(x)在區(qū)間[0,$\frac{3}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),若x1+x2=7,則|AB|的值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)D(2,y0)在拋物線C上,且|DF|=3,直線y=x-1與拋物線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線C的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=x3-2x2+x的單調(diào)遞減區(qū)間為($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《數(shù)學(xué)統(tǒng)綜》有如下記載:“有凹線,取三數(shù),小小大,存三角”.意思是說“在凹(或凸)函數(shù)(函數(shù)值為正)圖象上取三個(gè)點(diǎn),如果在這三點(diǎn)的縱坐標(biāo)中兩個(gè)較小數(shù)之和大于最大的數(shù),則存在將這三點(diǎn)的縱坐標(biāo)值作為三邊長(zhǎng)的三角形”.現(xiàn)已知凹函數(shù)f(x)=x2-2x+2,在$[\frac{1}{3},{m^2}-m+2]$上任取三個(gè)不同的點(diǎn)(a,f(a)),(b,f(b)),(c,f(c)),均存在以f(a),f(b),f(c)為三邊長(zhǎng)的三角形,則實(shí)數(shù)m的取值范圍為(  )
A.[0,1]B.$[0,\frac{{\sqrt{2}}}{2})$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案