20.直線$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則AB的中點(diǎn)坐標(biāo)為(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

分析 把直線的參數(shù)方程化為普通方程后代入圓x2+y2=16化簡可得x2+3x-1=0,可得x1+x2=-3,即AB的中點(diǎn)的橫坐標(biāo)為-$\frac{3}{2}$,代入直線的方程求得AB的中點(diǎn)的縱坐標(biāo).

解答 解:直線$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))即y=-$\sqrt{3}x$-2$\sqrt{3}$
代入圓x2+y2=16化簡可得x2+3x-1=0,
∴x1+x2=-3,即AB的中點(diǎn)的橫坐標(biāo)為-$\frac{3}{2}$,
∴AB的中點(diǎn)的縱坐標(biāo)為-$\frac{\sqrt{3}}{2}$,
故AB的中點(diǎn)坐標(biāo)為 (-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$),
故選D.

點(diǎn)評 本題考查把參數(shù)方程化為普通方程的方法,一元二次方程根與系數(shù)的關(guān)系,線段的中點(diǎn)公式的應(yīng)用,求得x1+x2=-3,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.滿足條件|z-i|+|z+i|=4的復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的軌跡是( 。
A.一條直線B.兩條直線C.D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)P(1,$\frac{\sqrt{2}}{2}$)在橢圓E上,直線l過橢圓的右焦點(diǎn)F且與橢圓相交于A,B兩點(diǎn).
(1)求E的方程;
(2)在x軸上是否存在定點(diǎn)M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值?若存在,求出定點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的右焦點(diǎn)為(2,0).則此雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={1,2,3,4},A={1,2},則滿足A⊆B的集合B個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=-x3+ax2-x-2在(-∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在復(fù)平面xOy內(nèi),若A(2,-1),B(0,3),則?OACB中,點(diǎn)C對應(yīng)的復(fù)數(shù)為( 。
A.2+2iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b為常數(shù),則( 。
A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)滿足f(2x-1)=x+1,則f(3)等于( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案