分析 根據(jù)題意,由雙曲線右焦點(diǎn)的坐標(biāo)可得c2=1+b2=4,解可得b=$\sqrt{3}$,即可得雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而由雙曲線漸近線方程計(jì)算可得答案.
解答 解:根據(jù)題意,雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為(2,0),
即c=2,
則有c2=1+b2=4,解可得b=$\sqrt{3}$,
則雙曲線的方程為:x2-$\frac{{y}^{2}}{3}$=1,
則此雙曲線的漸近線方程為y=±$\sqrt{3}$x;
故答案為:y=±$\sqrt{3}$x.
點(diǎn)評 本題考查雙曲線的幾何性質(zhì),注意由焦點(diǎn)坐標(biāo)求出b的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 |
lnx | 0 | 0.69 | 1.10 | 1.39 | 1.61 |
x-2 | -1 | 0 | 1 | 2 | 3 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,-3) | B. | $(-\sqrt{3},3)$ | C. | $(\sqrt{3},-3)$ | D. | (-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com