8.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的右焦點(diǎn)為(2,0).則此雙曲線的漸近線方程為y=±$\sqrt{3}$x.

分析 根據(jù)題意,由雙曲線右焦點(diǎn)的坐標(biāo)可得c2=1+b2=4,解可得b=$\sqrt{3}$,即可得雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而由雙曲線漸近線方程計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為(2,0),
即c=2,
則有c2=1+b2=4,解可得b=$\sqrt{3}$,
則雙曲線的方程為:x2-$\frac{{y}^{2}}{3}$=1,
則此雙曲線的漸近線方程為y=±$\sqrt{3}$x;
故答案為:y=±$\sqrt{3}$x.

點(diǎn)評 本題考查雙曲線的幾何性質(zhì),注意由焦點(diǎn)坐標(biāo)求出b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若角α的終邊與角$\frac{π}{6}$的終邊關(guān)于直線y=x對稱,且α∈(-4π,-2π),則α=-$\frac{11π}{3}$,-$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤{e}^{3}}\\{-x+{e}^{3}+3,x>{e}^{3}}\end{array}\right.$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),則$\frac{f({x}_{3})}{{x}_{2}}$的最大值為$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時(shí),關(guān)于x的方程f[f(x)]=a實(shí)數(shù)解的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.由表格中的數(shù)據(jù)可以判定函數(shù)f(x)=lnx-x+2的一個(gè)零點(diǎn)所在的區(qū)間是(k,k+1)(k∈Z),則k的值為( 。
x12345
lnx00.691.101.391.61
x-2-10123
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$y=\sqrt{x}$,求與直線y=-2x-4垂直的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則AB的中點(diǎn)坐標(biāo)為( 。
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos($\frac{π}{2}$-ωx)+2sin($\frac{π}{3}$-ωx)(ω>0,x∈R),若f$(\frac{π}{6})$+f$(\frac{π}{2})$=0,且f(x)在區(qū)間$(\frac{π}{6},\frac{π}{2})$上遞減.
(1)求f(0)的值;     
(2)求ω;
(3)解不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值為2,求a的值;
(2)若對?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案