17.在等比數(shù)列{an}中,各項(xiàng)均為正值,且a6a10+a3a5=41,a4a8=5,則a4+a8=$\sqrt{51}$.

分析 由等比數(shù)列{an}中,各項(xiàng)均為正值,且a6a10+a3a5=41,可得${a}_{8}^{2}+{a}_{4}^{2}$=41,又a4a8=5,即可得出.

解答 解:由等比數(shù)列{an}中,各項(xiàng)均為正值,且a6a10+a3a5=41,
∴${a}_{8}^{2}+{a}_{4}^{2}$=41,又a4a8=5,
則a4+a8=$\sqrt{41+2×5}$=$\sqrt{51}$.
故答案為:$\sqrt{51}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x-y+2≥0}\\{x+y-2≤0}\end{array}\right.$,z=3x+y+m的最大值為1,則m為( 。
A.-1B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線3x-4y+2=0的單位法向量$\overrightarrow{n_0}$=$±(\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知?jiǎng)狱c(diǎn)M(x,y)的坐標(biāo)滿(mǎn)足$\sqrt{{{(x-2)}^2}+{y^2}}$=|x+2|,則動(dòng)點(diǎn)M的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則要得到y(tǒng)=f(x)的圖象,只需要把y=Asinωx的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{1}{6}$個(gè)單位D.向右平移$\frac{1}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.過(guò)曲線C:y=ex上一點(diǎn),然后再過(guò)P1(x1,y1)做曲線C的切線l1交x軸于Q2(x2,0),又過(guò)Q2做x軸P0(0,1)作曲線C的切線l0交x軸于點(diǎn)Q1(x1,0),又過(guò)Q1做x軸的垂線交曲線C于P1(x1,y1)的垂線交曲線C于點(diǎn)P2(x2,y2),…,以此類(lèi)推,過(guò)點(diǎn)Pn的切線ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過(guò)點(diǎn)Qn+1做x軸的垂線交曲線C于點(diǎn)Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)曲線C與切線ln及垂線Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;
(3)在滿(mǎn)足(2)的條件下,若數(shù)列Sn的前n項(xiàng)和為T(mén)n,求證:$\frac{{{T_{n+1}}}}{T_n}$<$\frac{{{x_{n+1}}}}{x_n}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)S一枚骰子,觀察擲出的點(diǎn)數(shù),則事件“擲出奇數(shù)點(diǎn)或3的倍數(shù)”的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算下列各式的值:
(1)8${\;}^{\frac{2}{3}$+(0.01)${\;}^{-\frac{1}{2}}}$+($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$;
(2)21g5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若a,b是異面直線,b,c是異面直線,則( 。
A.a∥cB.a,c是異面直線
C.a,c相交D.a,c的位置關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案