A. | -1 | B. | -3 | C. | 2 | D. | 3 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最大值,列出方程求解m即可.
解答 解:作出不等式組$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x-y+2≥0}\\{x+y-2≤0}\end{array}\right.$對應(yīng)的平面區(qū)域如圖:(陰影部分)
由z=3x+y+m得y=-3x+z-m,
平移直線y=-3x+z-m,
由圖象可知當(dāng)直線y=-3x+z-m經(jīng)過點(diǎn)A時(shí),直線y=-3x+z-m的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x-2y+1=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
代入目標(biāo)函數(shù)z=3x+y+m得z=3×1+1+m=1,解得m=-3.
故選:B.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-3)、5 | B. | (-2,3)、5 | C. | (-2,3)、$\sqrt{5}$ | D. | ( 3,-2)、$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{27}{14}$ | D. | -$\frac{23}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,2,3,4} | C. | {0,1,2,3,4} | D. | (-1,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>2} | B. | {x|x>3或x<2} | C. | {x|2≤x≤3} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com