求函數(shù)f(x)=
1
2
x+sinx,x∈[0,2π]的最值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:f(x)=
1
2
+cosx
,x∈[0,2π].令f′(x)=0,解得x=
3
3
.分別令f′(x)>0,令f′(x)<0,即可得出函數(shù)的單調(diào)性,求出極值與區(qū)間端點(diǎn)的函數(shù)值,經(jīng)過比較即可得出最值.
解答: 解:f(x)=
1
2
+cosx
,x∈[0,2π].
令f′(x)=0,解得x=
3
3

令f′(x)>0,解得0≤x<
3
3
<x≤2π
,此時函數(shù)f(x)單調(diào)遞增;令f′(x)<0,解得
3
<x<
3
,此時函數(shù)f(x)單調(diào)遞減.
計算可得:f(0)=0,f(
3
)
=
π
3
+
3
2
f(
3
)
=
3
-
3
2
,f(2π)=π.
因此最大值為π,最小值為0.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究閉區(qū)間上函數(shù)的最值,考查了推理能力和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,試求:
(1)xyz的值;
(2)x4+y4+z4的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時滿足以下三條:
①對任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)若函數(shù)f(x)為理想函數(shù),求f(0)的值;
(2)判斷函數(shù)g(x)=2x-1(x∈[0,1])是否為理想函數(shù),并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,設(shè)F是拋物線E:x2=2py(p>0)的焦點(diǎn),過點(diǎn)F作斜率分別為k1、k2的兩條直線l1、l2,且k1•k2=-1,l1與E相交于點(diǎn)A、B,l2與E相交于點(diǎn)C,D.已知△AFO外接圓的圓心到拋物線的準(zhǔn)線的距離為3(O為坐標(biāo)原點(diǎn)).
(1)求拋物線E的方程;
(2)若
AF
FB
+
DF
FC
=64,求直線l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示.△ABC中,∠B=90°,M為AB上一點(diǎn),使得AM=BC,N為BC上一點(diǎn),
使得CN=BM,連AN,CM交于P點(diǎn).求∠APM的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=3,且2,
an+1+an+1
,n+3成等比數(shù)列.
(Ⅰ)求a2,a3,a4以及數(shù)列{an}的通項公式an(要求寫出推導(dǎo)過程);
(Ⅱ)令Tn=a1a2-a2a3+a3a4-a4a5+…a2na2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱臺的上底面積為16,下底面積為64,求棱臺被它的中截面分成的上、下兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=(x-1)x 
2
3
在[-1,
1
2
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=3,若
OC
=
1
2
OA
,
OD
=
1
2
OB
,AD與BC交于點(diǎn)P,則
OP
AB
=
 

查看答案和解析>>

同步練習(xí)冊答案