已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=2xtan2a+sin(2a+
π
4
),數(shù)列{an}的首項a1=1,an+1=f(an).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)求數(shù)列{nan}的前n項和Sn
(Ⅰ)∵tanα=
2
-1,
∴tan2α=
2tanα
1-tan2α
=
2(
2
-1)
1-(
2
-1)
2
=1,又α為銳角,
∴2α=
π
4
,
∴sin(2α+
π
4
)=1,
∴f(x)=2x+1;
(Ⅱ)∵an+1=f(an)=2an+1,
∴an+1+1=2(an+1),
∵a1=1,
∴數(shù)列{an+1}是以2為首項,2為公比的等比數(shù)列,
∴an+1=2•2n-1=2n,
∴an=2n-1,
∴nan=n•2n-n,
下面先求{n•2n}的前n項和Tn
Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n
2Tn=1×22+2×23+…+(n-1)•2n+n•2n+1,
兩式相減得:-Tn=2+22+23+…+2n-n•2n+1
=
2-2n+1
1-2
-n•2n+1
=2n+1-2-n•2n+1,
∴Tn=2+(n-1)•2n+1
∴Sn=2+(n-1)•2n+1-
(1+n)n
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的通項公式an=-2n+11,前n項和Sn
(1)求數(shù)列{an}的前n項和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a3=7,a5+a7=26,{an}的前n項和為Sn
(1)求an及Sn;
(2)令bn=
1
a2n
-1
(n∈N),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
2
n•(an+2)
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和Sn=12n-n2
(Ⅰ)求數(shù)列{an}的通項公式,并證明{an}是等差數(shù)列;
(Ⅱ)若cn=12-an,求數(shù)列{
1
cncn+1
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差數(shù)列{bn},其中b3=2,b5=6,.
(1)求數(shù)列{an}的通項公式;
(2)若cn=(bn+3)an,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}時公差不為零的等差數(shù)列,a1=1,a1,a3,a9成等比數(shù)列,則數(shù)列{an2an}的前n項和sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)證明數(shù)列{an-n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)證明不等式Sn+1≤4Sn,對任意n∈N*皆成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項和Sn為( 。
A.
n2+n
2
-
1
2n
B.
n2+n+4
2
-
1
2n-1
C.
n2+n+2
2
-
1
2n
D.
n2+n+4
2
-
1
2n

查看答案和解析>>

同步練習(xí)冊答案