精英家教網 > 高中數學 > 題目詳情
若函數f(x)=
ax2+1,x≥0
x3,x<0
,則不等式f(a)>f(1-a)的解集為( 。
A、[-2,-
1
2
)∪(
1
2
,2]
B、(-∞,-
1
2
)∪(
1
2
,+∞)
C、[-1,0)∪(0,1]
D、(-∞,0)∪(0,+∞)
考點:其他不等式的解法
專題:計算題,分類討論,函數的性質及應用,不等式的解法及應用
分析:對a討論,a=0時,直接代入檢驗即可;a>0時,通過單調性得到不等式a>1-a;a<0時,代入解析式,解不等式即可得到,最后求并集即可.
解答: 解:當a=0時,f(0)=1,f(1)=1,不滿足條件;
當a>0時,x≥0時,f(x)遞增,x<0遞減,
且x≥0的函數值為正,x<0時,函數值為負,則有f(x)在R上遞增,
由f(a)>f(1-a)可得a>1-a,解得a>
1
2

當a<0時,1-a>0,則由f(a)>f(1-a)可得a3>a(1-a)2+1,
即為2a2-a-1>0,解得a>1或a<-
1
2
,則為a<-
1
2

綜上可得,a>
1
2
或a<-
1
2

故選:B.
點評:本題考查函數的單調性的運用,考查分類討論的思想方法,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知正方形ABCD的邊長為2,點E為邊AD的中點,以AE為邊向外作正方形AEFG,現將正方形AEFG繞點A按順時針方向轉動至AE與AB重合,則
CE
DF
的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)對任意x,y∈R都有:f(x+y)=f(x)+f(y),且f(1)=2,當x<0時,f(x)<0.
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調性;
(3)解不等式f(x2+1)-f(1-x)<4.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,內角A,B,C所對的邊長分別是a,b,c.若c-acosB=(2a-b)cosA,則△ABC的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的體積為( 。
A、
3
B、
16π
3
C、4π
D、8π

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
-|x3-2x2+x|(x<1)
lnx(x≥1)
,若命題“?t∈R,且t≠0,使得f(t)≥kt”是假命題,則正實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三邊a,b,c成等比數列,且a+c=
21
,
1
tanA
+
1
tanC
=
5
4

(Ⅰ)求cosB;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

某人以分期付款的方式購買了一套住房,售價50萬元,首期付20萬元,余款按月歸還,在20年內還清,余款以利率0.5%按月計算利息,并平均加到每月還款額上,問此人每月要付多少購房款,最終實際為住房付了多少款?

查看答案和解析>>

科目:高中數學 來源: 題型:

sin585°的值為( 。
A、-
2
2
B、
2
2
C、-
3
2
D、{an}

查看答案和解析>>

同步練習冊答案