已知某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的體積為( 。
A、
3
B、
16π
3
C、4π
D、8π
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:幾何體為圓柱挖去一個圓錐,根據(jù)三視圖可得圓錐與圓柱的底面直徑都為4,高都為2,把數(shù)據(jù)代入圓錐與圓柱的體積公式計算可得答案.
解答: 解:由三視圖知:幾何體為圓柱挖去一個圓錐,且圓錐與圓柱的底面直徑都為4,高為2,
∴幾何體的體積V1=π×22×2-
1
3
×π×22×2=
16π
3

故選:B
點(diǎn)評:本題考查的知識點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+b(a、b為常數(shù))滿足f(0)=f(1),方程f(x)=x有兩個相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,4]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實(shí)數(shù),則下列各關(guān)系式正確的是( 。
A、2lgx+lgy=2lgx+2lgy
B、2lg(x+y)=2lgx•2lgy
C、2lgx•lgy=2lgx+2lgy
D、2lg(xy)=2lgx•2lgy

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非空集合S={x|m≤x≤l},滿足:當(dāng)x∈S時,有x2∈S,給出如下四個命題:
①若m=1,則S={1};
②若l=1,則m的取值集合為[-1,1];
③若m=-
1
3
,則l的取值集合為[
1
9
,1];
④若l=
1
4
,則m的取值集合為[-
1
2
,0].
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求關(guān)于x的不等式x2-3ax+2a2<0的解集.
(2)若p:實(shí)數(shù)x滿足1<x<4是q:實(shí)數(shù)x滿足x2-3ax+2a2<0的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax2+1,x≥0
x3,x<0
,則不等式f(a)>f(1-a)的解集為( 。
A、[-2,-
1
2
)∪(
1
2
,2]
B、(-∞,-
1
2
)∪(
1
2
,+∞)
C、[-1,0)∪(0,1]
D、(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
cosA
cosB
=
b
a
,且C=
3

(1)求角A,B的大;
(2)設(shè)函數(shù)f(x)=sin(2x+A)-sin2x+cos2x,求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,
.
q
=(2a,1),
.
p
=(2b-c,cosC),且
.
q
.
p
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4
3
x3-
1
x
的導(dǎo)函數(shù)為f′(x),則f′(x)的最小值為(  )
A、1B、2C、4D、8

查看答案和解析>>

同步練習(xí)冊答案