已知常數(shù)、、都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,的解集為.
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設(shè)不等式的解集為集合,當(dāng)時,函數(shù)只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅰ);(Ⅱ)當(dāng)或時,函數(shù)在上只有一個零點(diǎn).
解析試題分析::1.第(Ⅰ)的解答還是要破費(fèi)周折的.首先要求出導(dǎo)函數(shù).
然后根據(jù)的解集為,通過解混合組,得到進(jìn)而得到.接下來通過研究函數(shù)的單調(diào)性,由的極大值等于,可解得,這樣就可以求出的極小值.2.第(Ⅱ)問先由不等式的解集為集合,可以解得.然后研究的單調(diào)性,值得注意的是,換句話說方程兩邊對求導(dǎo)數(shù),、應(yīng)看作是常數(shù).單調(diào)性弄清楚后,還要比較、的大小.然后根據(jù)只有一個零點(diǎn),列出或,最后解之即可.值得注意的是,很多考生漏了.
試題解析:(Ⅰ)∵,∴.
∵不等式的解集為,
∴不等式的解集為.
∴即
∴,.
∴當(dāng)或時,,即為單調(diào)遞減函數(shù);
當(dāng)時,,即為單調(diào)遞增函數(shù).
∴當(dāng)時,取得極大值,當(dāng)時,取得極小值.
由已知得,解得.
∴.
∴的極小值.
(Ⅱ)∵,,,
∴,解得,即.
∵,∴.
∴當(dāng)或時,,即為單調(diào)遞減函數(shù);
當(dāng)時,,即為單調(diào)遞增函數(shù).
∴當(dāng)時,為單調(diào)遞減函數(shù);
當(dāng)時,為單調(diào)遞增函數(shù).
∵,
,,
∴.
∴在上只有一個零點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果,是函數(shù)的兩個零點(diǎn),為函數(shù)的導(dǎo)數(shù),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-alnx,a∈R.
(Ⅰ)當(dāng)f(x)存在最小值時,求其最小值φ(a)的解析式;
(Ⅱ)對(Ⅰ)中的φ(a),
(。┊(dāng)a∈(0,+∞)時,證明:φ(a)≤1;
(ⅱ)當(dāng)a>0,b>0時,證明:φ′()≤≤φ′().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,,且)的圖象在處的切線與軸平行.
(1)確定實(shí)數(shù)、的正、負(fù)號;
(2)若函數(shù)在區(qū)間上有最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,且函數(shù)在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點(diǎn),當(dāng)時,直線的斜率恒小于,試求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對任意?若存在,求的所有值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù) (為常數(shù))
(Ⅰ)=2時,求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)l為曲線C:在點(diǎn)(1,0)處的切線.
(I)求l的方程;
(II)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com