已知橢圓的左、右焦點(diǎn)分別為,.過(guò)的直線交橢圓于兩點(diǎn),過(guò)的直線交橢圓于兩點(diǎn),且,垂足為
(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,證明:;
(Ⅱ)求四邊形的面積的最小值.
 
 
 
 
 
 
 
(Ⅰ)同解析;(Ⅱ)四邊形的面積的最小值為;
(Ⅰ)橢圓的半焦距,
知點(diǎn)在以線段為直徑的圓上,故
所以,
(Ⅱ)(。┊(dāng)的斜率存在且時(shí),的方程為,代入橢圓方程,并化簡(jiǎn)得
設(shè),,則
,

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134523558234.gif" style="vertical-align:middle;" />與相交于點(diǎn),且的斜率為,
所以,
四邊形的面積

當(dāng)時(shí),上式取等號(hào).
(ⅱ)當(dāng)的斜率或斜率不存在時(shí),四邊形的面積
綜上,四邊形的面積的最小值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且其焦點(diǎn)F(c,0)(c>0)到相應(yīng)準(zhǔn)線l的距離為3,過(guò)焦點(diǎn)F的直線與橢圓交于A、B兩點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M為右頂點(diǎn),則直線AM、BM與準(zhǔn)線l分別交于P、Q兩點(diǎn),(P、Q兩點(diǎn)不重合),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的方程是,橢圓的左頂點(diǎn)為,離心率,傾斜角為的直線與橢圓交于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)向量),若點(diǎn)在橢圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知△頂點(diǎn)(-4,0)和(4,0),頂點(diǎn)在橢圓上,則=                                 (  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求經(jīng)過(guò)點(diǎn)P(1,1),以y軸為準(zhǔn)線,離心率為的橢圓的中心的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓G:的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的一點(diǎn),且滿足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時(shí)橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)分別為,直線軸于點(diǎn),且.
(1)試求橢圓的方程;
(2)過(guò)、分別作互相垂直的兩直線與橢圓分別交于、、、四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在第一象限,且是橢圓上的一點(diǎn),△的內(nèi)切圓半徑是,求的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若點(diǎn)是直線被橢圓所截得的線段的中點(diǎn),則的方程是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案