(為常數(shù)).函數(shù)定義為:對每個給定的實數(shù),

(Ⅰ)求對所有實數(shù)成立的充要條件(用表示);

(Ⅱ)設為兩實數(shù),滿足,且,若,

求證:函數(shù)在區(qū)間上的單調增區(qū)間的長度和為(閉區(qū)間的長度定義為).

本小題主要考查函數(shù)的概念、性質、圖象以及命題之間的關系等基礎知識,考查靈活運用數(shù)形結合、分類討論的思想方法進行探索、分析與解決問題的綜合能力.

解:(1)由的定義可知,(對所有實數(shù))等價于

(對所有實數(shù))這又等價于,即

對所有實數(shù)均成立.        (*)

  由于,故其最大值為,

  故(*)等價于,即,這就是所求的充分必要條件。

(2)分兩種情形討論

     (i)當時,由(1)知(對所有實數(shù)),

則由易知,

再由的單調性可知,

函數(shù)在區(qū)間上的單調增區(qū)間的長度

(參見示意圖1)

(ii)時,不妨設,則,于是

   當時,有,從而;

時,有

從而  ;

時,,及,由方程

      解得圖象交點的橫坐標為

                          ⑴顯然,

這表明之間。由⑴易知

 

綜上可知,在區(qū)間上,   (參見示意圖2)

故由函數(shù)的單調性可知,在區(qū)間上的單調增區(qū)間的長度之和為,由于,即,得

          ⑵

故由⑴、⑵得 

綜合(i)(ii)可知,在區(qū)間上的單調增區(qū)間的長度和為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函f(x)=In(ax+1)+
1
2
x2
-
x
a
+b(a,b為常數(shù),a>0)
(1)若函數(shù)f(x)的圖象在點(0,f(0))處的切線方程y=2,求a、b的值;
(2)當b=2時若函數(shù)f(x)在區(qū)間[0,+∞)上的最小值為2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究性學習小組研究函數(shù)f(x)=ax3+bx(a≠0,a,b為常數(shù))的 性質:
(Ⅰ)甲同學得到如下表所示的部分自變量x及其對應函數(shù)值y的近似值(精確到0.01):
x -1 -0.72 -0.44 -0.16 0.12 0.4
y的近似值 4.00 1.15 0.02 -0.14 0.11 0.08
請你根據(jù)上述表格中的數(shù)據(jù)回答下列問題:
(i)函數(shù)f(x)在區(qū)間(0.4,0.44)內(nèi)是否存在零點,寫出你的判斷并加以證明;
(ii)證明:函數(shù)f(x)在區(qū)間(-∞,-0.3)上單調遞減;
(Ⅱ)乙同學發(fā)現(xiàn)對于函數(shù)f(x)圖象上的兩點A(-1,4),B(t,f(t))(-1<t<2),存在m∈(-1,t),使f'(m)的值恰為直線AB的斜率,請你判斷乙同學的結論是否正確?若正確,請給出證明并確定m的個數(shù),若不正確,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。已知函數(shù),時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;若函數(shù)上是以3為上界函數(shù)值,求實數(shù)的取值范圍;若,求函數(shù)上的上界T的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北孝感高中高三年級九月調研考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南省高一12月月考數(shù)學 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

同步練習冊答案