19.已知實數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≥3}\end{array}\right.$,則z=4x-2y的最小值是( 。
A.-15B.-4C.6D.18

分析 首先畫出可行域,關鍵目標函數(shù)的幾何意義求最小值.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≥3}\end{array}\right.$,得到可行域如圖:由$\left\{\begin{array}{l}{x=3}\\{x-y+5=0}\end{array}\right.$,
解得B(3,8)
z=4x-2y變形為y=2x-$\frac{z}{2}$,當此直線經(jīng)過圖中B時,
在y軸的截距最大,z最小,所以z的最小值為4×3-2×8=-4;
故選:B.

點評 本題考查了簡單線性規(guī)劃問題;正確畫出可行域,利用目標函數(shù)的幾何意義求最值是常規(guī)方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≤(a-3)x2+(2a-13)x+1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知正項等比數(shù)列{an}的前n項和為Sn,且a1a2a3=216,a4=24,若不等式λ≤1+Sn對一切n∈N*恒成立,則實數(shù)λ的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 20 40 20 10 10
乙公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 10 20 20 40 10
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是各項均為正數(shù)的等比數(shù)列,a11=8,設bn=log2an,且b4=17.
(Ⅰ)求證:數(shù)列{bn}是以-2為公差的等差數(shù)列;
(Ⅱ)設數(shù)列{bn}的前n項和為Sn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列說法錯誤的是(  )
A.命題,“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0“
B.對于命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0
C.若m,n∈R,“l(fā)nm<lnn“是“em<en”的必要不充分條件
D.若p∨q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.|$\overrightarrow{a}$|=10,|$\overrightarrow$|=36,$\overrightarrow{a}$•$\overrightarrow$=-180,$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=x+xlnx,若m∈Z,且(m-2)(x-2)<f(x)對任意的x>2恒成立,則m的最大值為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,存在單位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow$-$\overrightarrow{e}$)=0,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

同步練習冊答案