要得到函數(shù)的圖像,只需要將函數(shù)的圖像( )

A.向左平移個(gè)單位 B.向右平移個(gè)單位

C.向左平移個(gè)單位 D.向右平移個(gè)單位

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+(1-a)x-alnx\;,\;a∈R$.
(1)若f(x)存在極值點(diǎn)為1,求a的值;
(2)若f(x)存在兩個(gè)不同零點(diǎn)x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知遞增數(shù)列{an},a1=2,其前n項(xiàng)和為Sn,且滿足3(Sn+Sn-1)=${a}_{n}^{2}$+2(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${log}_{2}\frac{_{n}}{{a}_{n}}$=n,求其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程并指出其形狀;

(2)設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

設(shè)滿足約束條件,則目標(biāo)函數(shù)的取值范圍為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)函數(shù),若,則實(shí)數(shù)等于( )

A. B. C.2 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點(diǎn)E為PD的中點(diǎn),點(diǎn)F在棱DC上移動(dòng).
(1)當(dāng)點(diǎn)F為DC的中點(diǎn)時(shí),求證:EF∥平面PAC
(2)求證:無論點(diǎn)F在DC的何處,都有PF⊥AE
(3)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4$\sqrt{5}$.
(Ⅰ)設(shè)M是線段PC上的一點(diǎn),證明:平面BDM⊥平面PAD
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形,AB⊥AD,CD⊥AD,點(diǎn)E為線段BC的中點(diǎn),F(xiàn),G分別為線段PA,AE上一點(diǎn),且AB=AD=2,PF=2FA.
(1)確定點(diǎn)G的位置,使得FG∥平面PCD;
(2)點(diǎn)Q為線段AB上一點(diǎn),且BQ=2QA,若平面PCQ將四棱錐P-ABCD分成體積相等的兩部分,求三棱錐C-DEF的體積.

查看答案和解析>>

同步練習(xí)冊答案