1.若等比數(shù)列{an}中,a3a7=8,a4+a6=6,則a2+a8=(  )
A.9B.-9C.6D.-6

分析 利用等比數(shù)列的通項公式及其性質(zhì)即可得出.

解答 解:由等比數(shù)列{an}的性質(zhì)可得,a4a6=a3a7=8,又a4+a6=6,
聯(lián)立解得$\left\{\begin{array}{l}{{a}_{4}=2}\\{{a}_{6}=4}\end{array}\right.$,或$\left\{\begin{array}{l}{{a}_{4}=4}\\{{a}_{6}=2}\end{array}\right.$.
∴q2=2或$\frac{1}{2}$.
∴q2=2時,a1=$\frac{\sqrt{2}}{2}$;q2=$\frac{1}{2}$時,a1=8$\sqrt{2}$.
則a2+a8=a1q(1+q6)=9.
故選:A.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.M是△ABC所在平面內(nèi)一點,$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow 0$,D為BC中點,則$\frac{{{S_{△ABC}}}}{{{S_{△MBC}}}}$的值為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{(x-1)^{0}}{\sqrt{3-2x}}$的定義域是(-∞,1)∪(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.計算:
(1)$\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}$;    
(2)lg25-lg22+lg4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{-x,x>1}\end{array}\right.$,若f(x)=2,則x的值是ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線x-2y+4=0與直線3x-6y-5=0之間的距離為$\frac{17\sqrt{5}}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.多面體ABCDEF(如圖甲)的俯視圖如圖乙,己知面ADE為正三角形.
(1)求多面體ABCDEF的體積;
(2)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知f($\sqrt{x}$+1)=x+3$\sqrt{x}$-1,則f(2)=(  )
A.3B.5C.3$\sqrt{2}$+1D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.$\frac{{cos{{36}°}\sqrt{1-sin{{18}°}}}}{{cos{{18}°}}}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案