分析 (1)當(dāng)a=1時(shí),利用集合的基本運(yùn)算求M∪N及N∩∁RM;
(2)利用x∈M是x∈N的充分條件,即可求實(shí)數(shù)a的取值范圍.
解答 解:(1)N={x|x2-2x-3≤0}={x|-1≤x≤3},
當(dāng)a=1時(shí),M={x|-a<x<a+1,a∈R}={x|-1<x<2},
∴M∪N={x|-1≤x≤3}∪{x|-1<x<2}={x-1≤x≤3},
N∩∁RM={x|x=-1或2≤x≤3};
(2)∵N={x|-1≤x≤3},M={x|-a<x<a+1,a∈R},
若x∈M是x∈N的充分條件,
則M⊆N,
若M=∅,即-a≥a+1,即a≤-$\frac{1}{2}$時(shí),滿足條件.
若M≠∅,要使M⊆N,
則 $\left\{\begin{array}{l}{-a<a+1}\\{-a≥-1}\\{a+1≤3}\end{array}\right.$,即 $\left\{\begin{array}{l}{a>-\frac{1}{2}}\\{a≤1}\\{a≤2}\end{array}\right.$,
∴-$\frac{1}{2}$<a≤1,
綜上:a≤1.
點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,以及充分條件和必要條件的應(yīng)用,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=$\frac{2n}{\frac{7}{9}(1{0}^{n}-1)}$ | B. | an=$\frac{18n-9}{7(1{0}^{n}-1)}$ | C. | an=$\frac{2n-1}{7(1{0}^{n}-1)}$ | D. | an=$\frac{2n-1}{\frac{7}{8}({8}^{n}-1)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
班級(jí) | 1 | 2 | 3 | 4 | 5 | 6 |
頻數(shù) | 6 | 10 | 12 | 12 | 6 | 4 |
達(dá)到 | 3 | 6 | 6 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin1>sin2>sin3 | B. | sin2>sin1>sin3 | C. | sin1>sin3>sin2 | D. | sin3>sin2>sin1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com