【題目】定義在上的函數(shù)滿足,當(dāng)時, ,函數(shù).若對任意,存在,不等式成立,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】對任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,
等價于:f(s)min≥g(t)min.
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2]時, ,
令x∈[﹣4,﹣2),則(x+4)∈[0,2], ,
﹣4≤x<﹣3時, .
﹣3≤x<﹣2時, .
又
可得f(x)min=﹣8.
函數(shù)g(x)=x3+3x2+m,x∈[﹣4,﹣2),
g′(x)=3x2+6x=3x(x+2)>0,∴函數(shù)g(x)在x∈[﹣4,﹣2)單調(diào)遞增,
∴g(x)min=g(﹣4)=﹣64+48+m=m﹣16,
由題意可得:﹣8≥m﹣16,解得m≤8.
∴實數(shù)m的取值范圍是(﹣∞,8]
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16, ,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推. 設(shè)該數(shù)列的前項和為,
規(guī)定:若 ,使得( ),則稱為該數(shù)列的“佳冪數(shù)”.
(Ⅰ)將該數(shù)列的“佳冪數(shù)”從小到大排列,直接寫出前3個“佳冪數(shù)”;
(Ⅱ)試判斷50是否為“佳冪數(shù)”,并說明理由;
(III)(i)求滿足>70的最小的“佳冪數(shù)”;
(ii)證明:該數(shù)列的“佳冪數(shù)”有無數(shù)個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 為中點, .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),記.
(1)求證: 在區(qū)間內(nèi)有且僅有一個實數(shù);
(2)用表示中的最小值,設(shè)函數(shù),若方程在區(qū)間內(nèi)有兩個不相等的實根,記在內(nèi)的實根為.求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)解不等式;
(2)若關(guān)于的方程的解集為空集,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),設(shè)為自然對數(shù)的底數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值;
(3)設(shè),若,對于任意的兩個正實數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設(shè)直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點,
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M點,若為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com