如圖,橢圓=1(a>b>0)與過A(2,0),B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(1)求橢圓方程;
(2)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF2的中點(diǎn),求tan∠ATM.

【答案】分析:(1)直線AB方程與橢圓方程聯(lián)解,利用根的判別式算出a2+4b2-4=0.再由橢圓的離心率e=,得a=2b,代入前面的式子可得a2=2且b2=,從而得到橢圓方程;
(2)由(1)算出F1、F2的坐標(biāo),從而得到AF2的中點(diǎn)M(1+,0),聯(lián)解AB方程與橢圓方程得T(1,).
最后利用直線的斜率公式和兩角差的正切公式,即可得到tan∠ATM的值.
解答:解:(1)過點(diǎn)A、B的直線方程為:
∵直線AB與橢圓有唯一公共點(diǎn),
∴將y=1-代入橢圓方程,化簡(jiǎn)得
方程(b2+)x2-a2x+a2-a2b2=0有惟一解,
∴△=a2b2(a2+4b2-4)=0(ab≠0),
故a2+4b2-4=0.
又∵橢圓的離心率e=,
∴a=2b,代入上式可得a2=2,b2=,
因此,所求的橢圓方程為;
(2)由(1)得c==,得F1(-,0),F(xiàn)2(-,0)
從而算出M(1+,0)
將直線AB方程與橢圓方程聯(lián)解,可得T(1,).
∴tan∠AF1T==-1,
又∵tan∠TAM=-=,tan∠TMF2=-=,
∴tan∠ATM=tan(∠TMF2-∠TAM)==-1.
點(diǎn)評(píng):本題給出橢圓滿足的條件,求橢圓的方程并求角的正切之值.主要考查了直線與橢圓的位置關(guān)系、橢圓的幾何性質(zhì),同時(shí)考查解析幾何的基本思想方法和綜合解題能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年陜西省延安市實(shí)驗(yàn)中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省南充市高考數(shù)學(xué)零診試卷(文科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年浙江省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年天津市濱海新區(qū)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與一等軸雙曲線相交,M是其中一個(gè)交點(diǎn),并且雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn)F1,F(xiàn)2,雙曲線的焦點(diǎn)是橢圓的頂點(diǎn)A1,A2,△MF1F2的周長(zhǎng)為4(+1).設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案