7.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,且兩個(gè)坐標(biāo)系取相同的單位長度,已知圓C1:ρ=-2cosθ,曲線${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求圓C1和曲線C2的普通方程;
(Ⅱ)過圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l交曲線C2于A,B兩點(diǎn),求圓心C1到A,B兩點(diǎn)的距離之積.

分析 (Ⅰ)圓C1:ρ=-2cosθ,即ρ2=-2ρcosθ,利用互化公式可得圓C1的普通方程.由曲線${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t為參數(shù)),利用平方關(guān)系可得:曲線C2的普通方程.
(Ⅱ)由(Ⅰ)可知:C1(-1,0)則直線l的參數(shù)方程代入$\frac{{x}^{2}}{4}+{y}^{2}$=1,有$\frac{13}{4}{t}^{2}-t-3=0$,圓心C1到A,B兩點(diǎn)的距離之積為|t1t2|.

解答 解:(Ⅰ)圓C1:ρ=-2cosθ,即ρ2=-2ρcosθ,直角坐標(biāo)方程為(x+1)2+y2=1,
曲線${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t為參數(shù)),消去參數(shù)可得$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(Ⅱ)過圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l的方程為y=$\sqrt{3}$(x+1),
則直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),
將其代入$\frac{{x}^{2}}{4}+{y}^{2}$=1,有$\frac{13}{4}{t}^{2}-t-3=0$,∴${t}_{1}{t}_{2}=-\frac{12}{13}$.
所以圓心C1到A,B兩點(diǎn)的距離之積為|t1t2|=$\frac{12}{13}$.

點(diǎn)評 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={-1,0,1},N={y|y=1+sin$\frac{πx}{2}$,x∈M},則集合M∩N的真子集個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在一次水下考古活動(dòng)中,某一潛水員需潛水50米到水底進(jìn)行考古作業(yè).其用氧量包含一下三個(gè)方面:①下潛平均速度為x米/分鐘,每分鐘用氧量為$\frac{1}{100}$x2升;②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;③返回水面時(shí),平均速度為$\frac{1}{2}$x米/分鐘,每分鐘用氧量為0.32升.潛水員在此次考古活動(dòng)中的總用氧量為y升.
(1)如果水底作業(yè)時(shí)間是10分鐘,將y表示為x的函數(shù);
(2)若x∈[6,10],水底作業(yè)時(shí)間為20分鐘,求總用氧量y的取值范圍;
(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知?jiǎng)訄A過定點(diǎn)P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動(dòng)圓圓心C的軌跡方程;
(2)過點(diǎn)(2,0)的直線l與C相交于A,B兩點(diǎn).求證:$\overrightarrow{OA}•\overrightarrow{OB}$是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列四個(gè)圖中,函數(shù)$y=\frac{10•1n|x+1|}{x+1}$的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知曲線y=xn在點(diǎn)(1,0)處的切線與直線2x-y+1=0平行,則實(shí)數(shù)n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)簡單幾何體的三視圖如圖所示,其正視圖和俯視圖均為正三角形,側(cè)視圖為腰長是2的等腰直角三角形則該幾何體的體積為( 。
A.$\frac{4}{9}$$\sqrt{3}$B.1C.$\frac{8}{9}$$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)z=(1+bi)(2+i)是純虛數(shù),則實(shí)數(shù)b=( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案