16.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

分析 根據(jù)$\overrightarrow{a}⊥(\overrightarrow{a}+\overrightarrow)$便可得出$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)=0$,結(jié)合條件進(jìn)行數(shù)量積的運(yùn)算即可求出$cos<\overrightarrow{a},\overrightarrow>$的值,進(jìn)而得出向量$\overrightarrow{a},\overrightarrow$的夾角.

解答 解:$\overrightarrow{a}⊥(\overrightarrow{a}+\overrightarrow)$;
∴$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$
=$1+\sqrt{2}cos<\overrightarrow{a},\overrightarrow>$
=0;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{\sqrt{2}}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow>≤π$;
∴$\overrightarrow{a},\overrightarrow$的夾角為$\frac{3π}{4}$.
故選C.

點(diǎn)評(píng) 考查向量垂直的充要條件,向量數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.點(diǎn)P(1,-1)到直線ax+3y+2a-6=0的距離的最大值為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$3\sqrt{2}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,且兩個(gè)坐標(biāo)系取相同的單位長(zhǎng)度,已知圓C1:ρ=-2cosθ,曲線${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求圓C1和曲線C2的普通方程;
(Ⅱ)過圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l交曲線C2于A,B兩點(diǎn),求圓心C1到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F,過F斜率為1的直線交橢圓于M,N兩點(diǎn),MN的垂直平分線交x軸于點(diǎn)P.若$\frac{|MN|}{|PF|}$=4,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若“x=1”是“(x-a)[x-(a+2)]≤0”的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,+∞)B.(-1,1)C.[-1,1]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=xlnx.
(1)求曲線f(x)在x=e處的切線方程.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.計(jì)算:$\frac{3-i}{1+i}$=1-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)點(diǎn)F,B分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)右焦點(diǎn)和上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△OFB的周長(zhǎng)為3+$\sqrt{3}$,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=xlnx+a|x-1|.
(Ⅰ)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案