A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
分析 根據(jù)$\overrightarrow{a}⊥(\overrightarrow{a}+\overrightarrow)$便可得出$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)=0$,結(jié)合條件進(jìn)行數(shù)量積的運(yùn)算即可求出$cos<\overrightarrow{a},\overrightarrow>$的值,進(jìn)而得出向量$\overrightarrow{a},\overrightarrow$的夾角.
解答 解:$\overrightarrow{a}⊥(\overrightarrow{a}+\overrightarrow)$;
∴$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$
=$1+\sqrt{2}cos<\overrightarrow{a},\overrightarrow>$
=0;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{\sqrt{2}}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow>≤π$;
∴$\overrightarrow{a},\overrightarrow$的夾角為$\frac{3π}{4}$.
故選C.
點(diǎn)評(píng) 考查向量垂直的充要條件,向量數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | $3\sqrt{2}$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,+∞) | B. | (-1,1) | C. | [-1,1] | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com