分析 (1)根據(jù)數(shù)陣中數(shù)的排列規(guī)律,可得第n行的從左到右第m+1個(gè)數(shù)為Cnm,由此即可算出第20行中從左到右的第4個(gè)數(shù)的大。
(2)由(1)的結(jié)論,建立關(guān)于n的方程并化簡整理,解之可得n=34;
(3)n階(包括0階)楊輝三角的所有數(shù)的和即是1+2+22+…+2n,根據(jù)等比數(shù)列的前n項(xiàng)和公式計(jì)算即可.
解答 解:(1)由題意,得第n行的從左到右第m+1個(gè)數(shù)為Cnm,(n∈N,m∈N且m≤n)
∴第20行中從左到右的第4個(gè)數(shù)為C203=1140;
(2)由題意,得
∵第n行中從左到右第14與第15個(gè)數(shù)的比為$\frac{2}{3}$,
∴$\frac{{C}_{n}^{13}}{{C}_{n}^{14}}$=$\frac{2}{3}$,可化簡$\frac{14}{n-13}$=$\frac{2}{3}$,解得n=34,
(3)1+2+22+…+2n=$\frac{1-{2}^{n+1}}{1-2}$=2n+1-1.
點(diǎn)評(píng) 本題給出三角形數(shù)陣,求它的指定項(xiàng)和在m斜列中包含的等式.著重考查了組合數(shù)的性質(zhì)、運(yùn)用組合數(shù)解決實(shí)際應(yīng)用問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | $\frac{29π}{4}$ | C. | 29π | D. | 116π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0” | |
B. | 命題“?x0∈R,${x}_{0}^{2}$-x0>0”的否定是:“?x∈R,x2-x≤0” | |
C. | 命題“p或q”為真命題,則命題p和命題q均為真命題 | |
D. | “x>3”是“x>2”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x1,x2∈R且x1<x2,$x_1^3≥x_2^3$ | B. | ?x1,x2∈R且x1≥x2,$x_1^3≥x_2^3$ | ||
C. | ?x1,x2∈R且x1<x2,$x_1^3≥x_2^3$ | D. | ?x1,x2∈R且x1≥x2,$x_1^3≥x_2^3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com