8.已知二次函數(shù)f(x)=x2-2x,求函數(shù)y=f(x)在下列區(qū)間上的值域:
(1)x∈R;(2)x∈[-1,0];
(3)x∈[2,4];(4)x∈[-1,4].

分析 把二次函數(shù)配方可得f(x)=(x-1)2-1,得知函數(shù)的對稱軸為x=1,最小值為-1,遞增區(qū)間為(1,+∞),根據(jù)單調(diào)性判斷函數(shù)的值域即可.

解答 解:(1)f(x)=(x-1)2-1,
∴函數(shù)的值域為[-1,+∞);
(2)由上可知,函數(shù)在x∈[-1,0]上遞減,
∴函數(shù)的值域為[0,3];
(3)由上可知,函數(shù)在x∈[2,4]上遞增;
∴函數(shù)的值域為[0,8];
(4)由上可知,函數(shù)在x∈[-1,4]上,最小值為-1,最大值為8,
故值域為[-1,8].

點評 考查了二次函數(shù)的對稱性和單調(diào)性,利用單調(diào)性求函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C過點O(0,0),和點T(1,3),且圓心在直線n:x-2y=0上,直線l:x+my-2m-1=0,m∈R,
(1)若直線n與直線l平行,求這兩條平行線間的距離;
(2)求圓C的方程;
(3)設(shè)直線l恒過定點A,求點A的坐標并判斷點A與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{3}$,右頂點為($\sqrt{3}$,0).
(1)求G的方程;
(2)直線y=kx+1與曲線G交于不同的兩點A,B,若在x軸上存在一點M,使得|AM|=|BM|,求點M的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x→x0時,f(x)→∞,g(x)→A(A是常數(shù)),試證明:$\underset{lim}{x→{x}_{0}}$$\frac{g(x)}{f(x)}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓M:x2+y2-2x=0及點A(0,t),B(0,t+6)(-5≤t≤-2),若圓M是三角形ABC的內(nèi)切圓,求三角形ABC的面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正方體ABCD-A'B'C'D'中,E,F(xiàn),G分別是棱A'B',BB',B'C'上的中點.求證:平面EFG∥平面ACD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.己知集合A=[0,1),B=[1,+∞),函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-{x}^{2},x∈A}\\{2{x}^{2}-x+a,x∈B}\end{array}\right.$,若對任意x0∈A,都有f(f(x0))∈B,則實數(shù)a的取值范圍是(  )
A.[-1,2)B.[-1,+∞)C.[0,+∞)D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合A={x|x2-3x-10<0},B={x|m+1<x<1-3m},且A∪B=B,則m的取值范圍是m≤-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若圓x2+y2=m與圓x2+y2+6x-8y-11=0相切,則實數(shù)m的值為1或121.

查看答案和解析>>

同步練習(xí)冊答案