分析 (1)求出f′(x),判斷f′(x)在(-1,0)和(0,1)上的符號(hào)即可得出結(jié)論;
(2)求出f(x)在[-1,1]上的最值,令fmax(x)-fmin(x)≤e-1得出關(guān)于a的不等式a-lna≤e-1,再根據(jù)F(a)=a-lna的單調(diào)性得出a的范圍.
解答 (1)證明:f′(x)=axlna+2x-lna=(ax-1)lna+2x,
∴f′(0)=0,
∵a>1,
∴當(dāng)x∈(-1,0)時(shí),(ax-1)<0,lna>0,2x<0,
∴f′(x)=(ax-1)lna+2x<0,
當(dāng)x∈(0,1)時(shí),(ax-1)>0,lna>0,2x>0,
∴f′(x)=(ax-1)lna+2x>0,
∴f(x)在(-1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增,
∴f(0)是f(x)的極小值.
(2)解:由(1)可知f(x)在(-1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增,
∴fmin(x)=f(0)=1,
又f(-1)=$\frac{1}{a}$+1+lna,f(1)=a+1-lna,
令h(a)=f(-1)-f(1)=$\frac{1}{a}-a+2lna$,則h′(a)=-$\frac{1}{{a}^{2}}$-1+$\frac{2}{a}$=$\frac{-{a}^{2}+2a-1}{{a}^{2}}$=-$\frac{(a-1)^{2}}{{a}^{2}}$<0,
∴h(a)在(1,+∞)上單調(diào)遞減,
∴h(a)=f(-1)-f(1)<h(1)=0,即f(-1)<f(1),
∴fmax(x)=f(1)=a+1-lna.
∴對(duì)于任意x1,x2∈[-1,1],使得|f(x1)-f(x2)|≤f(1)-f(0)=a-lna,
∴a-lna≤e-1恒成立,
令F(a)=a-lna,則F′(a)=1-$\frac{1}{a}$>0,
∴F(a)在(1,+∞)上是增函數(shù),且F(e)=e-1,
∴1<a≤e.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分?jǐn)?shù)區(qū)間 | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] |
人數(shù) | 2 | 8 | 32 | 38 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 16+32$\sqrt{2}$ | C. | 16+8$\sqrt{2}$ | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1050輛 | B. | 1350輛 | C. | 1650輛 | D. | 1950輛 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | $\frac{4}{5}$ | D. | 與點(diǎn)P的位置有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,-2) | B. | (-∞,-3] | C. | [-3,-2)∪(6,+∞) | D. | (-3,-2)∪(6,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com