設(shè)函數(shù)f(x)=ax+sinx+cosx.若函數(shù)f(x)的圖象上存在不同的兩點A,B,使得曲線y=f(x)在點A,B處的切線互相垂直,則實數(shù)a的取值范圍為
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),設(shè)出A,B的坐標(biāo),代入導(dǎo)函數(shù),由函數(shù)在A,B處的導(dǎo)數(shù)等于0列式,換元后得到關(guān)于a的一元二次方程,結(jié)合線性規(guī)劃知識求得a的取值范圍.
解答: 解:由f(x)=ax+sinx+cosx,得
f′(x)=a+cosx-sinx,
設(shè)A(x1,y1),B(x2,y2),
則f′(x1)=a+cosx1-sinx1,f′(x2)=a+cosx2-sinx2
f(x1)f(x2)=-1,得
a2+[(cosx1-sinx1)+(cosx2-sinx2)]a+(cosx1-sinx1)(cosx2-sinx2)+1=0.
令m=cosx1-sinx1,n=cosx2-sinx2,
則m∈[-
2
2
]
,n∈[-
2
,
2
]

∴a2+(m+n)a+mn+1=0.
△=(m+n)2-4mn-4=(m-n)2-4,
∴0≤(m-n)2-4≤4,0≤
(m-n)2-4
≤2

當(dāng)m-n=±2
2
時,m+n=0,
a=
-(m+n)±
(m+n)2-4mn-4
2
=
-(m+n)±
(m-n)2-4
2

∴-1≤a≤1.
∴函數(shù)f(x)的圖象上存在不同的兩點A,B,使得曲線y=f(x)在點A,B處的切線互相垂直,則實數(shù)a的取值范圍為[-1,1].
故答案為:[-1,1].
點評:本題考查利用導(dǎo)數(shù)研究曲線上某點的切線方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,解答的關(guān)鍵在于由關(guān)于a的方程的根求解a的范圍,是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,經(jīng)過點A(1,2),其焦點F在y軸上,直線y=kx+2交拋物線C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交拋物線C于點N.
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明:拋物線C在點N處的切線與AB平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+
a
2x
(a∈R)為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R,若(x2+
a
x
)5
的二項展開式中x4項的系數(shù)為20,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+2x-3的值域為A,函數(shù)y=-x2-3x+7的值域為B,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
①函數(shù)f(x)在=
1
lgx
(0,+∞)上是減函數(shù)
②函數(shù)f(x)的圖象連續(xù)不斷,且定義域為R,若x=x0為極值點,則f′(x0)=0
③函數(shù)f(x)=2sinxcosx的最小正周期為π
④已知
a
=(1,
3
),
b
=(0,-1),則
a
b
的夾角為
5
6
π

其中,正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足不等式組
x+y≤2
y-x≤2
y≥1
,則
y
x+3
的取值范圍是( 。
A、[0,
2
3
]
B、[
1
4
2
3
]
C、[0,
1
2
]
D、[
1
4
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行所示的程序框圖,如果輸入a=3,那么輸出的n的值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x=
1
4
y2的焦點與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點重合,F(xiàn)1、F2是橢圓C的左、右焦點,Q是橢圓C上任意一點,且
QF1
QF2
的最大值是3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得PM、PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案