【題目】直線過點(diǎn),與軸,軸的正半軸分布交于兩點(diǎn),為坐標(biāo)原點(diǎn).

(1)當(dāng)直線的斜率時(shí),求的外接圓的面積;

(2)當(dāng)的面積最小時(shí),求直線的方程.

【答案】(1);(2)

【解析】

試題分析:對(duì)問題(1),首先根據(jù)題目條件求出直線的方程,在此基礎(chǔ)上求出直角三角形的斜邊長(zhǎng),即的外接圓的直徑,進(jìn)而可求出的外接圓的面積;對(duì)于問題(2),首先設(shè)出直線的方程,并用斜率表示出的面積,再結(jié)合基本不等式可求出的面積最小時(shí)斜率的值,進(jìn)而可求得直線的方程.

試題解析:(1)由題知直線的方程為,即.............2分

可知,..................3分

是直角三角形,為斜邊,故的外接圓半徑..............4分

所以外接圓的面積......................5分

(2)由題知直線的斜率存在,且,設(shè)直線

;令,......................7分

由勾函數(shù)知,當(dāng)時(shí),最小..................9分

故直線的方程為,即....................10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點(diǎn)分別為,點(diǎn)滿足

() 求橢圓的離心率;

() 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)的直角頂點(diǎn),已知,且點(diǎn)的縱坐標(biāo)大于0.

(1)的坐標(biāo);

(2)求圓關(guān)于直線對(duì)稱的圓的方程;在直線上是否存在點(diǎn),過點(diǎn)的任意一條直線如果和圓都相交,則該直線被兩圓截得的線段長(zhǎng)相等,如果存在求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線互相平行,求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

動(dòng)點(diǎn)分別到兩定點(diǎn)(-3,0)、(3,0) 連線的斜率之乘積為,設(shè)的軌跡為曲線,分別為曲線的左、右焦點(diǎn),則下列說法中:

(1)曲線的焦點(diǎn)坐標(biāo)為

(2)當(dāng)時(shí),的內(nèi)切圓圓心在直線上;

(3)若,則

(4)設(shè),則的最小值為;

其中正確的序號(hào)是:_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,左、右頂點(diǎn)分別為、,是橢圓上一點(diǎn), 記直線、的斜率為、,且有.

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn), 為直徑的圓經(jīng)過原點(diǎn), 且線段的垂直平分線在軸上的截距為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?80分以上者到甲部門工作;180分以下者到乙部門工作.

(1)求男生成績(jī)的中位數(shù)及女生成績(jī)的平均值;

(2)如果用分層抽樣的方法從甲部門人選和乙部門人選中共選取5人,再從這5人中選2人,那么至少有一人是甲部門人選的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

的極值點(diǎn),求實(shí)數(shù)的值;

上為增函數(shù),求實(shí)數(shù)的取值范圍;

III當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,分別是的中點(diǎn)

(1)求證: 平面平面;

(2)求證: 平面

(3)求三棱錐體積

查看答案和解析>>

同步練習(xí)冊(cè)答案