橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點A關(guān)于原點的對稱點為B,!F為其左焦點,若AF⊥BF,設(shè)∠ABF=
π
6
,則該橢圓的離心率為( 。
A、
2
2
B、
3
-1
C、
3
3
D、1-
3
2
考點:橢圓的簡單性質(zhì)
專題:數(shù)形結(jié)合,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)對稱性得出四邊形AF2BF1為矩形,設(shè)AF1=x,則BF1=
3
x
,運用矩形的幾何性質(zhì),得出邊長,
再運用定義判斷得出(
3
+1
)c=2a,即可求解離心率.
解答: 解:橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點A關(guān)于原點的對稱點為B,
F1(-c,0),F(xiàn)2(c,0)A(x0,y0),B(-x0,-y0),
∵AF⊥BF,設(shè)∠ABF=
π
6
,
∴根據(jù)橢圓的對稱性可知:四邊形AF2BF1為矩形,
∴∴AF2=BF1=
3
x
,F(xiàn)1F2=2x
∴x+
3
x
=2a.F1F2=2c=2x,
∴(
3
+1
)c=2a,
c
a
=
2
3
+1
=
3
-1

點評:本題考察了橢圓的幾何性質(zhì),定義,解直角三角形,矩形的幾何性質(zhì),運用數(shù)形結(jié)合數(shù)學(xué)解決代數(shù)問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的一個內(nèi)角為120°,并且三邊長構(gòu)成公差為4的等差數(shù)列,則△ABC三條邊的長度分別為
 
,其面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+1(a>0且a≠1)的圖象必經(jīng)過點( 。
A、(0,1)
B、(1,0)
C、(2,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={-1,0,1},N={x|x2≤x},M∩N=( 。
A、{0}
B、{0,1}
C、{-1,1}
D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的半焦距,則
a
b+c
的取值范圍是( 。
A、[
2
2
,+∞)
B、[
2
2
,1)
C、(0,
2
2
)
D、(
2
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,(x≤0)
f(x-1),(x>0)
,若方程f(x)=ax-1(a>0)有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

目前,埃博拉病毒在西非并逐漸蔓延,研究人員將埃博拉的傳播途徑結(jié)合飛機航班數(shù)據(jù),埃博拉的潛伏時間等因素,計算出不限飛情況下,亞洲國家中印度、中國、阿聯(lián)酋、黎巴嫩在一個月后出現(xiàn)輸入性病例的概率分別是0.1、0.2、0.2、0.2,假定各地出現(xiàn)輸入性病例是彼此獨立的.
(1)求上述四國中恰有1個國家出現(xiàn)輸入性病例的概率;
(2)從上述四國中任選兩國調(diào)研疫情,求恰有一國選在西亞(阿聯(lián)酋、黎巴嫩),一國選在中國和印度的概率;
(3)專家組擬按下面步驟進行疫情調(diào)研,每一步若出現(xiàn)輸入性病例,若出現(xiàn)則留下來研究,不在進行下一步調(diào)研;
第一步,一次性選中國和印度兩個國家同時進行調(diào)研;
第二步,在阿聯(lián)酋和黎巴嫩兩個國家中隨機抽取1個國家進行調(diào)研
第三步,對剩下的一個國家進行調(diào)研.
求該專家組調(diào)研國家個數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象連續(xù)且在區(qū)間[a,b]上的左右端點分別為A和B,點M(x0,y0)是該圖象上的一點,且x0=λa+(1-λ)b,λ∈[0,1],令向量
ON
=λ
OA
+(1-λ)
OB
,若|
MN
|
有最大值k,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)f(x)=x2+1在區(qū)間[0,1]上“k階線性近似”,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線M:y2=4x,圓F:(x-1)2+y2=1,過點F作直線l,自上而下依次與上述兩曲線交于點A,B,C,D(如圖所示),T(-1,0).
(Ⅰ)求|AB|•|CD|;
(Ⅱ)作D關(guān)于x軸的對稱點M,求證:T,A,M三點共線;
(Ⅲ)作C關(guān)于x軸的對稱點S,求S到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案