已知函數(shù)f(x)=
2-x-1,(x≤0)
f(x-1),(x>0)
,若方程f(x)=ax-1(a>0)有且只有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意作圖,a是直線y=ax-1的斜率,從而化方程f(x)=ax-1(a>0)有且只有兩個不相等的實(shí)數(shù)根為函數(shù)f(x)與直線y=ax-1有且只有兩個交點(diǎn),利用數(shù)形結(jié)合求解.
解答: 解:由題意作圖如下,
a是直線y=ax-1的斜率,
由圖可知,當(dāng)過點(diǎn)(1,1)時,
有臨界值:a=
1+1
1
=2,
當(dāng)過點(diǎn)(3,1)時,
有臨界值:a=
1+1
3-0
=
2
3
,
故結(jié)合圖象可得,
實(shí)數(shù)a的取值范圍是[
2
3
,2)

故答案為:[
2
3
,2)
點(diǎn)評:本題考查了方程的根與函數(shù)圖象的關(guān)系,同時考查了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2x-3
的定義域?yàn)閇
3
2
,+∞).
 
.(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-2
的定義域?yàn)椋ā 。?/div>
A、(2,+∞)
B、(+∞,2)
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面為棱形的四棱錐P-ABCD在那個,∠ABC=60°,PA=AC=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,!F為其左焦點(diǎn),若AF⊥BF,設(shè)∠ABF=
π
6
,則該橢圓的離心率為( 。
A、
2
2
B、
3
-1
C、
3
3
D、1-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y2-x-2y=0在二階矩陣M=
1 a
b 1
的作用下變換為曲線y2=x;
(i)求實(shí)數(shù)a,b的值;
(ii)求M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B(0,b),F(xiàn)1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),圓F2過原點(diǎn)O(圓心為F2),直線BF1與圓F2相切.
(1)求雙曲線的離心率;
(2)若直線BF1與雙曲線交于M,N兩點(diǎn),且△OMN的面積為2
6
,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:y2=4x,過焦點(diǎn)F斜率大于零的直線l交拋物線于A、B兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)D.
(Ⅰ)若線段AB的長為5,求直線l的方程;
(Ⅱ)在C上是否存在點(diǎn)M,使得對任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①命題“若x2-3x+2=0,則x=1”的否命題為“若x2-3x+2=0,則x≠1”;
②命題“若方程x2-mx+1=0有解,則m>4”的逆命題為真命題;
③對命題p和q,“p且q為假”是“p或q為假”的必要不充分條件.
假命題的序號為
 

查看答案和解析>>

同步練習(xí)冊答案