為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵市民租用公共自行車出行,公共自行車按每車每次的租用時間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時間不超過1小時,免費(fèi);
②租用時間為1小時以上且不超過2小時,收費(fèi)1元;
③租用時間為2小時以上且不超過3小時,收費(fèi)2元;
④租用時間超過3小時的時段,按每小時2元收費(fèi)(不足1小時的部分按1小時計算).
已知甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(Ⅰ)求甲、乙兩人所付租車費(fèi)相同的概率;
(Ⅱ)設(shè)甲、乙兩人所付租車費(fèi)之和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望Eξ
考點(diǎn):離散型隨機(jī)變量的期望與方差,互斥事件的概率加法公式
專題:概率與統(tǒng)計
分析:(Ⅰ)分別記“甲所付租車費(fèi)0元、1元、2元”為事件A1,A2A3 ,分別記“乙所付租車費(fèi)0元、1元、2元”為事件B1,B2,B3,記甲、乙兩人所付租車費(fèi)相同為事件M,則M=A1B1+A2B2+A3B3,由此根據(jù)已知條件利用互斥事件和相互獨(dú)立事件的概率計算公式能求出甲、乙兩人所付租車費(fèi)相同的概率.
(Ⅱ)由題設(shè)知ξ的可能取值為:0,1,2,3,4,分別求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),由此能求出ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)根據(jù)題意,
分別記“甲所付租車費(fèi)0元、1元、2元”為事件A1A2,A3 ,它們彼此互斥,
且P(A1)=0.4,P(A2)=0.5,
∴P(A3)=1-0.4-0.5=0.1,
分別記“乙所付租車費(fèi)0元、1元、2元”為事件B1,B2,B3,它們彼此互斥,
且P(B1)=0.5,P(B2)=0.3,
∴P(B3)=1-0.5-0.3=0.2,(2分)
由題知,A1,A2.A3與B1,B2,B3相互獨(dú)立,(3分)
記甲、乙兩人所付租車費(fèi)相同為事件M,則M=A1B1+A2B2+A3B3,
所以P(M)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3
=0.4×0.5+0.5×0.3+0.1×0.2
=0.37.(6分)
(Ⅱ) 據(jù)題意ξ的可能取值為:0,1,2,3,4,(7分)
P(ξ=0)=P(A1)P(B1)=0.2,
P(ξ=1)=P(A1)P(B2)+P(A2)P(B1
=0.4×0.3+0.5×0.5=0.37,
P(ξ=2)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1
=0.4×0.2+0.5×0.3+0.1×0.5=0.28,
P(ξ=3)=P(A2)P(B3)+P(A3)P(B2
=0.5×0.2+0.1×0.3=0.13,
P(ξ=4)=P(A3)P(B3)=0.1×0.2=0.02.(10分)
所以ξ的分布列為:
ξ 0 1 2 3 4
P 0.2 0.37 0.28 0.13 0.02
ξ的數(shù)學(xué)期望Eξ=0×0.2+1×0.37+2×0.28+3×0.13+4×0.02=1.4.(11分)
答:甲、乙兩人所付租車費(fèi)相同的概率為0.37,ξ的數(shù)學(xué)期望Eξ=1.4.(12分)
點(diǎn)評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x5)=log2x,求f(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為:x2+y2-4mx-2y+8m-7=0,(m∈R).
(Ⅰ)試求m的值,使圓C的面積最;
(Ⅱ)求與滿足(1)中條件的圓C相切,且過點(diǎn)(4,-3)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tana=-
4
3
,求
(1)
6sina+cosa
3sina-2cosa
的值;  
(2)
1
2sinacosa+cos2a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

完成下列進(jìn)位制之間的轉(zhuǎn)換,并寫出計算過程.
①10212(3)=
 
(10)
②412(8)=
 
(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與圓x2+(y-2)2=r2相切,且在兩坐標(biāo)軸上截距相等的直線共有四條,則正數(shù)r的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為
5
2
,則C的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正整數(shù)a1,a2,…,a10滿足:
aj
ai
3
2
,1≤i<j≤10,則a10的最小可能值是
 

查看答案和解析>>

同步練習(xí)冊答案