已知圓C的方程為:x2+y2-4mx-2y+8m-7=0,(m∈R).
(Ⅰ)試求m的值,使圓C的面積最;
(Ⅱ)求與滿(mǎn)足(1)中條件的圓C相切,且過(guò)點(diǎn)(4,-3)的直線(xiàn)方程.
考點(diǎn):圓的切線(xiàn)方程
專(zhuān)題:計(jì)算題,直線(xiàn)與圓
分析:(Ⅰ)將圓化為標(biāo)準(zhǔn)方程,將右邊配方,即可求得結(jié)論;
(Ⅱ)分類(lèi)討論,設(shè)所求直線(xiàn)方程為y+3=k(x-4),利用直線(xiàn)與圓相切,結(jié)合點(diǎn)到直線(xiàn)的距離公式,建立方程,即可求出直線(xiàn)方程.
解答: 解:(Ⅰ)配方得圓的方程為(x-2m)2+(y-1)2=4(m-1)2+4.
當(dāng)m=1時(shí),圓的半徑最小,此時(shí)圓的面積最。3分)
(Ⅱ)當(dāng)m=1時(shí),圓的方程為(x-2)2+(y-1)2=4.
當(dāng)斜率存在時(shí),設(shè)所求直線(xiàn)方程為y+3=k(x-4),即kx-y-4k-3=0.
由直線(xiàn)與圓相切,所以
|2k-1-4k-3|
k2+1
=2,
解得k=-
3
4

所以切線(xiàn)方程為y+3=-
3
4
(x-4),即3x+4y=0.…(10分)
又過(guò)(4,-3)點(diǎn),且與x軸垂直的直線(xiàn)x=4,也與圓相切.
所以所求直線(xiàn)方程為3x+4y=0及x=4.…(12分)
點(diǎn)評(píng):本題考查圓的方程,考查直線(xiàn)與圓的位置關(guān)系,考查分類(lèi)討論的數(shù)學(xué)思想,正確運(yùn)用直線(xiàn)與圓相切是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,為奇函數(shù)的是( 。
A、y=2x+
1
2x
B、y=x,x∈{0,1}
C、y=x•sinx
D、y=
1,x<0
0,x=0
-1,x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y,a都是實(shí)數(shù),且x+y=2a-1,x2+y2=a2+2a-3,求乘積xy的最小值及相應(yīng)的a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

巴西醫(yī)生馬廷思收集犯有各種貪污、受賄罪的官員與廉潔官員壽命的調(diào)查資料:50名貪官中有35人的壽命小于平均壽命、15人的壽命大于或等于平均壽命;60名廉潔官員中有10人的壽命小于平均壽命、50人的壽命大于或等于平均壽命這里,平均壽命是指“當(dāng)?shù)厝司鶋勖痹囉锚?dú)立性檢驗(yàn)的思想分析官員在經(jīng)濟(jì)上是否清廉與他們壽命的長(zhǎng)短之間是否獨(dú)立?k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為2,圓心在直線(xiàn)y=-x+2上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過(guò)點(diǎn)A(2,2)且與y軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(xiàn)(1,-3),若圓C上存在點(diǎn)Q,使|QF|2-|QE|2=32,求圓心的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,Sn=2•3n-1+5,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
3
4
,π<α<2π,求cos(
π
4
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車(chē)服務(wù)系統(tǒng)鼓勵(lì)市民租用公共自行車(chē)出行,公共自行車(chē)按每車(chē)每次的租用時(shí)間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過(guò)1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí),收費(fèi)1元;
③租用時(shí)間為2小時(shí)以上且不超過(guò)3小時(shí),收費(fèi)2元;
④租用時(shí)間超過(guò)3小時(shí)的時(shí)段,按每小時(shí)2元收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).
已知甲、乙兩人獨(dú)立出行,各租用公共自行車(chē)一次,兩人租車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí),設(shè)甲、乙租用時(shí)間不超過(guò)1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí)的概率分別是0.5和0.3.
(Ⅰ)求甲、乙兩人所付租車(chē)費(fèi)相同的概率;
(Ⅱ)設(shè)甲、乙兩人所付租車(chē)費(fèi)之和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果|
a
|=5,|
b
|=9 且
a
b
方向相反,那么
a
=
 
b

查看答案和解析>>

同步練習(xí)冊(cè)答案